
ADataBase

What it is:

AdataBase is a class that allows a C++ programmer to create,
maintain and use a single keyed indexed flat file database. The
database will handle unique or duplicate keys of a length of the
programmer's choice. Records are limited to 64530 total bytes (key
plus data) by the provided sort software. Unsigned sixty-four bit
arithmetic is used where appropriate so that there is a theoretical limit
of several billion billion bytes of data. As a more practical
consideration, a database is limited by the available resources required
to sort the main file. Initially the number of records can be set to any
desired number. The files can grow automatically as needed.

Records may be retrieved, added, deleted and changed easily. Record
retrieval is exceptionally quick. Full record locking is employed so
that any number of users can access the database simultaneously. File
locking ensures exclusive file use for sorting the index file which
must be done periodically to maintain performance and reorganizing
the database to reclaim space from records marked for deletion.
Automatic expansion, sort and reorganization, can be enabled.

Field extraction and insertion routines are provided. Being a class, as
many of these databases may be defined in a program as practical.

What you get:

The zip file, adatabasedemo.zip, contains:

1) A simple C++ project called databasedemo. It was created with
Visual C++ V6 as a simple C program without MFC and a window.
Unzip the file to where ever you please. Assuming you have Visual
C++ or something like it, you may build and run the simple demo
program which, if all goes well, will wind up displaying my address in
a message box.

2) Two files: adatabase.h which must be included in your projects
with the #include directive and adatabase.lib which must be linked to

your executables. Move them to locations where your compiler and
linker can find them.

3) A file called “sortsol.dll” which is used in the sort and
reorganization process. It must be located in %path%. Moving it to
“c:\WINDOWS\System32” is a good option. It can also reside in the
folder from which the executable is run. The sort software runtime is
from Mario M. Westphal of Germany. It is a tournament sort and will
handle multi-gigabyte files where there appears to be inadequate
resources to do it. It is the best sort software for Windows of which I
am aware.

4) A MS Word and PDF version of this manual.

Public functions:

To save space in the public function description list below, the
following conventions have been employed:

For functions that have no return, all errors are fatal and
unrecoverable. They produce a detailed error message and exit the
calling program.

Arguments enclosed in ‘[]‘s are optional.

For functions that return a Boolean, if the record cannot be read
and/or locked after ten seconds, a warning message box will pop up
giving the user the option of continuing for another ten seconds or
abandoning the effort. Someone else might have the record locked for
modification. Users should be encouraged to complete the
modification of existing records as quickly as possible to avoid the
situation where a record is locked for an unreasonable amount of time.
If and when the user abandons further attempts, the function will
return false.

In many cases, a false return might just as well indicate that the record
(key) is not found. While the return is the same and should be treated
by the programmer as the same, the user will most certainly know the
difference. All other errors are fatal and are treated as above.

The following public functions are available in the database class,
ADataBase. The argument(s) represented as "string" can be standard
C strings or C++ CString constructs. Those presented as "char*" must
be pre-allocated buffers of the size of the maximum data length plus
the size of the key plus one byte. They are to be filled by the called
function.

Initial operations:

Void SetName(string); this must be the first call into the database. It is

passed a path, file name and extension of the main database file
and from which the names of the database lock file and the
index file are derived.

Boolean Opentest(); this call can be used after SetName(...) to

determine if the database has already been created. If not, the
programmer should collect the appropriate parameters and call -

Void Create(UInt32, UInt32, UInt64, UInt32); the information passed

is: the key size in bytes, the maximum data size in bytes, the
initial number of records and the flag. There are four flag bits
that can be summed together:

DUPLICATEALLOWED Duplicate keys are allowed
AUTOGROW Automatically increase number of

records as needed
AUTOSORT Automatically attempt to sort when

needed
AUTOREORG Automatically attempt to reorganize

when needed

Boolean Open(); this opens the files in read/write-shared mode. If a
failure occurs at this point because of file locking, the
programmer will most likely choose to abandon the effort for
the time being.

Boolean SetParams(UInt32, UInt32, UInt32, UInt32) (optional)
The arguments are:
 FLAGS
 AUTOGROW trigger amount

 AUTOSORT trigger amount
 AUTOREORG trigger amount

A value of zero for any of the arguments means “no change”.

Although the flag settings and default triggers for the automatic
operations are usually sufficient for most needs, SetParams()
will allow changes to be made at run time. The
DUPLICATEALLOWED setting may not be changed. The
three AUTO flag settings may be changed and the change is
permanent until another change is made. The automatic trigger
levels are valid only for the instance of the calling program.
While the database need not be open to change trigger levels, it
must be to change flags.

Void SetFields(…) passes an ordered list of field lengths that

constitute the fields in the record. Include the key and terminate
the variable argument list with a NULL. Failure to include the
terminating NULL argument can result in crashes which are
difficult to diagnose.

Record addition:

Boolean Set(string, string); passes the key and the data, both of which

may be shorter than defined during creation but must be longer
or equal to one byte. Keys are alphanumeric. If keys are
constructed from numbers, please format them consistently for
sorting. Keys may not start with the space character. Neither
the key nor the data string may contain the fill character, '}',
right brace.

Keyed retrieval:

Boolean Get(string[, char* data]); use this call to get the first (or only)

record with the passed key. It returns the data portion of the
record in data and true from the function. If you are using the
field retrieval function, you may exclude the data buffer in the
call.

Boolean GetNext([char* data]); in a database which allows multiple

keys, this will get the next data record in the file. Like Get(...), a

false return could be because the key was not found or the
record was locked and abandoned.

Sequential retrieval:

UInt32 GetRec(UInt64[, char*]); Gets the record specified. Returns 1

if call return valid data, 0 if requested record is marked for
deletion and -1 if the call went beyond the valid data area. Data
returned includes the key. This is used to sequentially access
the database. The programmer is responsible for incrementing
the record number. Start at 1.

Field access:

Char* GetField(UInt32) Having set the fields, a call to GetField with

the field number (starting with 1) will return a pointer to a
NULL terminated string buffer containing the desired field
content. It is the programmer’s responsibility to assure that a
valid Get(), GetNext() or GetRec() without intervening calls
has been performed. No internal checks are made.

Void PutField(UInt32, string, char*) adjusts the string to the

appropriate length padding with blanks as necessary and stuffs
it into the user provided character buffer at the appropriate
location. The data buffer will be treated as a buffer appropriate
for Set() or ChangeRec(), i.e. the key field will be omitted. Use
zero based field numbers, just don’t use zero. Forgetting fields
in strings to be passed to the Set(…) function is not a good idea.

Modification:

Boolean LockRec(char*); locks the most recently obtained record

from Get(...) or GetNext(...). This is required before the
programmer uses ChangeRec(...). This will re-obtain the record
after locking it in preparation for ChangeRec(…). The
programmer should redisplay the data so that the user can be
sure it is the record to be changed and that no one else has
changed it in the mean time. In a database that allows duplicate
keys, the programmer must ensure that the correct record is
being manipulated. To do this, perform the following sequence:

Determine the correct record to delete/modify by using Get(…)
followed by GetNext(…). Once you have found the correct
record, call DeleteRec() or LockRec(…) followed by
ChangeRec(…).

Void ChangeRec(string); writes the string over the record you have

most recently retrieved and locked. This will unlock the record.
Failure to lock the record prior to this call will cause a fatal
error.

Boolean DeleteRec(); marks the most recently retrieved record for

deletion.

Other:

void Close(); important to call this prior to Sort(), Reorg(), and on

exiting your program.

Boolean Sort(); should be done on a regular basis when the database is

not being used. It attempts to open the files for exclusive use
and warns the user on failure. The programmer must Close() the
database prior to this call to insure his own process does not
prevent the exclusive file lock.

Boolean Reorg(); should be done on a regular basis when the database

is not being used. It attempts to open the files for exclusive use
and warns the user on failure. The programmer must Close() the
database prior to this call to insure his own process does not
prevent the exclusive file lock. Note; reorganizing the file
involves checking each record for being marked for deletion,
sorting the main file and rebuilding the index from the main
file. On multi-gigabyte files, this can take over a half an hour. If
your file is large, plan it at an off time. . In order to simulate
sorting on multiple fields, the sort key for reorganization is the
entire record so the programmer should arrange fields to be
alphanumeric and in the order desired.

void DisplayStatus(string); Allows the user to see how many records

are sorted relative to the actual number present, how many
records are present relative to the maximum and how many

deleted records exist. It displays information contained in the
control record of the main file. The string argument is "your
message" to be included.

Note to programmers! It has been the author’s observation that there
are bugs in C compilers that present problems in handling 64 bit
integers. In particular, assigning a variable defined as 64 bit (UInt64)
a value can produce unpredictable results. These problems can be
avoided by type casting. For example:

UInt64 var;
int x;

var = (UInt64)0;
var = (UInt64)x;

Technical support:

Rick Marsh
Datanex, Inc.
832 Wecoma Lp.
Florence, OR 97439
541 902 9595
Rick.marsh@datanex.com

Please call during normal business hours, Pacific Time.

