

 Page 1

Copyright 2006, Glassbox Corporation

Glassbox 2.0 User Guide

I. Welcome to Open Source Troubleshooting
Congratulations, you’re about to experience easier Java problem diagnosis than you’ve ever seen

before. Glassbox is a management agent with a browser-based interface that automatically

pinpoints common problems in Enterprise Java applications.

Glassbox 2.0 is a free and open source product which is the logical successor to both Glassbox

Troubleshooter 1.x and the Glassbox Inspector project. Upgrade to 2.0 from either project.

Locating the reason for an enterprise application failure represents the lion’s share of the time

spent getting your system healthy. Glassbox embeds the troubleshooting logic, empowering you

to identify common problems immediately. You may still need your sniffers, test harnesses and

probes, but thankfully they can now be focused on the exotic problems and their complexity can

be avoided when dealing with day to day issues.

The Glassbox troubleshooter uses Aspect-Oriented Programming (AOP) and Java Management

Extensions (JMX) technology to monitor your enterprise Java, without forcing you to embed

anything or change a single line of code. Glassbox provides a real time diagnosis of your system

and cross-references it against both your service levels and our knowledge base of failures.

 Page 2

Copyright 2006, Glassbox Corporation

II. Table of Contents
Glassbox 2.0 User Guide... 1

I. Welcome to Open Source Troubleshooting ... 1

II. Table of Contents... 2

III. Concepts ... 2

Glassbox troubleshooting... 2

Operations .. 3

“Slow” operations.. 4

IV. System Requirements ... 5

V. Automated Installation... 5

Agent (Server) Installation ... 5

Viewing Glassbox analysis in your browser.. 6

VI. Clustered Installation.. 7

Agent (Server) Installation ... 7

Configuring Agent Communication... 8

Viewing Clustered Glassbox Information.. 8

RMI Bug Workaround .. 9

JMX Incompatibilities.. 10

VII. Using Glassbox .. 10

The Operation Summary Table ... 10

The Operation Details Area.. 12

Remote Data through JMX Consoles .. 14

VIII. Open Source ... 14

IX. Getting Help and Reporting Problems... 15

X. Logging... 15

Log4j.xml Edits for Log4J ... 15

Logging.properties Edits for Java.Util.Logging .. 16

XI. Custom Glassbox Monitors.. 17

XII. Manual Installation ... 17

Agent (Server) Installation ... 18

Example Manual Agent Installation - Apache Tomcat on Java 5 JVMs..................................... 19

Example Manual Agent Installation - Apache Tomcat on Java 5 JVMs..................................... 20

III. Concepts

Glassbox troubleshooting

The Glassbox troubleshooter includes three components:

The browser-based client is an Ajax GUI which connects to Glassbox agents, and displays the

problems found in your Java application. Usually the client just runs as a standard web

application on the same server as the monitored application, but multiple clients can also connect

 Page 3

Copyright 2006, Glassbox Corporation

to a single agent simultaneously or a single client can connect to multiple agents in a clustered

environment.

The agent component runs on your application server, the same app server running the

application you want diagnosed. It can also be run in a clustered environment.

The monitor consists of a shared jar file(s) which is installed in the library directories of your

application server. This uses AOP technology to dynamically monitor your application, all

without any code changes or rebuilding.

Operations

 Page 4

Copyright 2006, Glassbox Corporation

The Glassbox troubleshooter watches for the JVM to execute certain high-level methods

commonly used to process external requests, such as Servlets and Struts Actions. It refers to

these as operations, measures them against a performance goal, and presents diagnoses for any

that fail or run too slowly. An operation might represent saving a shopping cart, looking up data

from a remote financial server with a web service call, or retrieving information from a database,

rather than the hundreds of Java methods that underlie these features.

Glassbox understands many modern frameworks such as Struts, Spring MVC, and JAX-RPC and

intelligently discovers the top level operations as the JVM executes them. Generally Glassbox

will discover reasonable operations even with custom dispatch frameworks, particularly if the

coder followed best practices.

Glassbox operations represent high level activities, however custom frameworks sometimes

create dispatch points which funnel many types of operations together, and this could cause

Glassbox to show multiple operations summarized on the same line. If you would like a more

fine grained control over the summarization points represented in the Glassbox summary

table, you can create a custom operation plugin (normally 10 lines or less of code). This is

dicussed further in the Custom Glassbox Monitors section of this document.

If you have any questions about frameworks supported, or ways to control how operations are

summarized, please contact us or ask on the forums, and we’ll be happy to assist you.

“Slow” operations

Unlike a profiling tool designed to simply measure timings, Glassbox is optimized to detect and

pinpoint performance problems. To do so it must measure operations against performance goals.

Glassbox’s performance goal is defined by a maximum time and a compliance percentage. For

example, if you specify your application should fulfill requests in 0.8 seconds or less, 98% of the

time, Glassbox will highlight operations as slow only if more than 2% of executions it has

observed have taken longer than 0.8 seconds.

Configuring Service Level Agreements (SLAs)

By default Glassbox uses a performance goal that highlights slow operations as those that take

longer than 1 second in at least 5% of executions. You can set the goal separately for each

Glassbox agent in the beans.xml file.

To configure these properties, you can edit the glassbox.properties file for the Web application.

This is located inside the glassbox.war file at Glassbox/WEB-INF/classes/glassbox.properties.

Many application servers will also unpack the Web application and allow you edit the properties

file, e.g., in tomcat you can typically edit TOMCAT_HOME\webapps\glassbox\WEB-

INF\classes\glassbox.properties. If you do edit this file, please keep a back up so you can update

the properties when you update the application. The following two properties correspond to

1000ms and 5%, you can edit them as needed to meet your performance criteria.

slowoperationAnalyzer.slowThresholdMillis=1000

 Page 5

Copyright 2006, Glassbox Corporation

operationAnalyzer.minimumSlowFrac=0.05

IV. System Requirements
Monitored Application Requirements

• Any working J2EE based application. Your application must start prior to diagnosing

with Glassbox.

System Requirements

• Server Platforms: Windows, Linux, Solaris. Glassbox should work on other servers that

support Java but it would require additional testing. Please let us know if you have tried

Glassbox on other platforms, or are interested in other certifications.

• Glassbox supports Java 5 VMs as well as Java 1.4. Glassbox does provide some

additional information while working on Java5 since we utilize the additional

management information they provide. We have tested on Sun VM’s, BEA JRockIt, and

IBM’s J9 VM’s. Java 1.3 VM’s are currently being tested and should be available soon. If

you wish to check the status of a particular version, please contact Glassbox.

• Application Servers: Glassbox should work on any application server that supports

Servlet 2.3 or later. We have tested and automated the installation process on Apache

Tomcat 5.5.x, 5.0.x, 4.1.x, WebLogic 8.1 and 9.x, JBoss 4.x, Oracle OC4J 10.1.x. We have

installed Glassbox on Websphere 5.0, 5.1, 6.0 and 6.1 and are testing and optimizing to

support an automated installation, and plan to support WebSphere and probably Glass

Fish in the 2.0 Beta release. If you want to get Glassbox working on another server, we’d

be glad to help you.

• We are constantly adding support for other platforms. Please check on the Glassbox

website under downloads for the most up to date list of supported platforms. We may

be able to move support up, or we may be able to work with you.

Glassbox software required

• glassbox.war includes both the installer for the agent and our web-client.

All software and documentation can be downloaded from www.glassbox.com.

V. Automated Installation

Agent (Server) Installation

Glassbox ships with an automated installation process in its Web client that supports many

popular application servers. This works in the majority of cases, but if you prefer a hands-on

install or you have trouble with the automated agent installer, the manual installation

instructions are listed in the appendix of this document. If you want to install in a clustered

environment, please see also the next section.

Rapid Install Process:

 Page 6

Copyright 2006, Glassbox Corporation

1. Drop the glassbox.war file into your running Application Server. Treat the glassbox.war

file like any other application .war file; if your Application Server normally requires

additional configuration to deploy and run a new application .war file then you will need

to perform those steps here.

2. Use your browser to visit the Glassbox installer application. For example, if your

Application Server was running on the machine ‘localhost’ on port 8080 you would go to:

http://localhost:8080/glassbox/InitializeInstall.form or just http://localhost:8080/glassbox

3. Follow the instructions in the Glassbox installer

4. Restart your Application Server either using the wrapper generated by the Glassbox

installer or restart after manually setting Java VM and possibly Classpath environment

variables yourself as described by the Glassbox installer.

5. Visit the glassbox/Verify.do page to verify Glassbox started on your application server.

This would be http://sampson:8080/glassbox/Verify.do if you are connecting to check that

Glassbox on the ‘sampson’ machine has started correctly.

6. Verify that the following Glassbox information is getting displayed on the console or

logged correctly.

++

- Glassbox Agent has started successfully.

++

A note about logging: If you are not seeing the console output expected, particularly if

you see no Glassbox data at all but know you followed the directions above, then please

review the appendix section on logging. Glassbox uses Jakarta Commons Logging and

logs helpful information at INFO level.

Viewing Glassbox analysis in your browser

1. Open a browser. Firefox and Microsoft Internet Explorer are both supported. Safari

support is planned, but for the time being we recommend that Mac users use Firefox.

2. View the client in your browser. Point your browser at the application ‘glassbox’ on the

machine where Glassbox was installed. Glassbox is a standard web-application in this

way, whoever setup Glassbox on your application server should be able to give you this

URL.

For example: If the Glassbox application is being run on the machine ‘sampson’ on the

default port ‘8080’, then the glassbox client would be at http://sampson:8080/glassbox

3. See your troubleshooting data. Glassbox monitors any application local to it by default,

so you should see a green dot next to ‘local’ in the connections tab, and you will see

traffic appear in the table when you click or run load on your application.

Note: This assumes you are running both Glassbox and the application you wish to

monitor on the same application server. This is recommended to verify and test

Glassbox functionality. To set up Glassbox in a multiple server environment, please see

the next section.

 Page 7

Copyright 2006, Glassbox Corporation

VI. Clustered Installation

Agent (Server) Installation

Glassbox ships as a standard Web application .war file.

The .war file contains two major components. First, an automated installer portion that lays

down the Glassbox monitoring files and must be run on each application server that you wish to

monitor. Second, a standard web application that runs on one or more application servers and

provides analysis and a browser interface for the monitored data. This web application is

normally run on the same application server being monitored, but it can be run in a remotely in a

clustered environment using either a direct RMI protocol or JMX Remote using RMI.

Advanced Clustered Install:

1. Deploy the glassbox.war file to each of your application servers with application(s) that

you would like to monitor. Treat the glassbox.war file like any other application .war

file, if your Application Servers require additional configuration to deploy and run a new

application .war file then you will need to perform those steps here.

2. Use your browser to visit the Glassbox installer at /glassbox/InitializeInstall.form on each

application server.

Example: if the applications to be monitored are running on both ‘sampson’ and

‘mckinley’, you would run through the installation steps by visiting both of the

following: http://sampson:8080/glassbox/InitializeInstall.form followed by

http://mckinley:8080/glassbox/InitializeInstall.form

3. Follow the instructions in the Glassbox installer to install on each of the application

servers. If you have more than one server on the same machine, see the section on

“Configuring Agent Communication” below.

4. Restart each of the Application Server to be monitored, either using the wrapper

generated by the Glassbox installer or restart after manually setting Java options

environment variables yourself as described by the Glassbox installer.

5. Visit the glassbox/Verify.do page for each of your connections to verify Glassbox started

on your application servers, for example to verify installation on ‘sampson’, you would

go to http://sampson:8080/glassbox/Verify.do

6. Verify that the following Glassbox information is getting displayed on each of the

consoles or is logged correctly.

++

- Glassbox Agent has started successfully.

++

A note about logging: If you are not seeing the console output expected, particularly if

you see no Glassbox data at all but know you followed the directions above, then please

review the appendix section on logging. Glassbox uses Jakarta Commons Logging and

logs helpful information at INFO level.

A note about using Oracle OC4J: If you are running oc4j in a clustered mode, add a -

userThreads argument to CMDARGS in the oc4j launch script

 Page 8

Copyright 2006, Glassbox Corporation

A note about using WebLogic: If you are using WebLogic version 8.1 or before, it

includes it’s own JMX implementation which is incompatible with other App Server. So

you cannot mix and match a clustered environment with WebLogic 8.1 and other servers,

it must be all WebLogic 8.1 in your cluster or no WebLogic 8.1.

A note about firewalls and connectivity: Before trying to run a clustered Glassbox,

verify you can telnet from the machine running the Glassbox webapp into each of the

machines you need monitored. It is not uncommon to have firewall or networking

issues, and those need to be configured before running anything clustered.

Configuring Agent Communication

In a clustered environment, by default Glassbox uses port 7232 to listen for remote connections to

view server data. It does this for both RMI and JMX Remote over RMI. In most cases, you won’t

need to change this for Glassbox to work. However, in some cases you might need to change

these settings. For example, if you are running multiple agents on the same machine, you will

want to pick a different port number. If you want to access remote data through a firewall, you

might want to change the port number also.

To configure these properties, you can edit the glassbox.properties file for the Web application.

This is located inside the glassbox.war file at Glassbox/WEB-INF/classes/glassbox.properties.

Many application servers will also unpack the Web application and allow you edit the properties

file, e.g., in tomcat you can typically edit TOMCAT_HOME\webapps\glassbox\WEB-

INF\classes\glassbox.properties. If you do edit this file, please keep a back up so you can update

the properties when you update the application.

To change the port on a server from the default, uncomment the following three lines and edit

the port number, e.g., to use port 8188 add these lines to the glassbox.properties file:

rmiJmxRegistry.port=8188

rmiService.registryPort=8188

glassboxJmxServerConnector.serviceUrl=service:jmx:rmi://localhost:8188/jndi/rmi://localhost:8188

/GlassboxTroubleshooter

It is also possible to configure Glassbox to use more advanced RMI and JMX options such as

security and to disable use of RMI and/or JMX over RMI. Glassbox by default uses an existing

JMX server to store its data. That too can be configured. If you need help editing the property

files and JMX system configuration to do these things, please contact us or post on the forum for

help.

Viewing Clustered Glassbox Information

1. Open a browser. Firefox and Microsoft Internet Explorer are both supported. Safari isn’t

working correctly for the 2.0 alpha, but we expect to support it for 2.0 final.

2. View the client in your browser. Point your browser at the application ‘glassbox’ on the

machine where Glassbox was installed. Glassbox is a standard web-application in this

 Page 9

Copyright 2006, Glassbox Corporation

way, whoever setup Glassbox on your application server should be able to give you this

URL.

For example: If the Glassbox application is being run on the machine ‘sampson’ on the

default port ‘8080’, then the glassbox client would be at http://sampson:8080/glassbox

3. Open the monitor panel. Click the network connections icon on the upper right corner of

your Glassbox client.

4. Add new network connections for each additional agent you want to monitor.

a. Click the add link

b. Choose a short display name which helps you remember your remote server

c. Identify the hostname of the computer where your monitored application is

running. Make sure the application server has been restarted using the Glassbox

wrapper or Java environment settings, so it has Glassbox monitoring enabled.

d. Choose the protocol as ‘RMI’ or ‘JMX on RMI’. Using pure RMI is generally

simpler. Using JMX on RMI also supports viewing lower-level detailed JMX data

in a remote console like JConsole. However, on certain legacy servers (like

Weblogic 8.1) using JMX Remote requires additional configuration.

e. Choose the port where Glassbox is listening. By default this is 7232. , if you did

not manually change it as described above, just accept the default.

f. Click save

g. On the list of connections, click on the red-dot next to the display name of the

connection you just added. The dot should turn green, and this would indicate

that you are successfully monitoring your server. Of course you must have

clicked on your monitored app, or some traffic must exist for Glassbox to show

anything.

5. Rinse and Repeat. Repeat step 4 for each of the servers where you installed Glassbox.

6. Check each connection. Click on each of the monitored applications to generate at least a

little load, and then verify that some load for each server is showing up in the Glassbox

client.

Troubleshooting a clustered install:

• Are your servers and Glassbox running? Do you see on the console or in the logs that

Glassbox started successfully? You may need to re-start, or verify that either you are

starting with the Glassbox wrapper or you are manually setting JAVA_OPTS.

• Did you run through the Glassbox install on each of them?

• Did this work previously? If so, you probably need to re-install Glassbox on each

application server since the client and server got out of synch.

• Can you reach the failing application server from your client machine? Run the

monitored application from the machine where you intend view the Glassbox client.

• If you can see data on each server locally, but can’t connect remotely, there are a few

common problems that might arise, notably an RMI bug from spaces in directories or

JMX incompatibilities. The following sections describe how to diagnose and fix these

issues.

RMI Bug Workaround

Whether you use direct RMI or JMX over RMI, Glassbox uses RMI for remote communications.

Unfortunately, RMI has a bug in handling limited understanding of directories with a space in

 Page 10

Copyright 2006, Glassbox Corporation

them. This normally comes up on Windows where your application server may have been

installed in a ‘Program Files’ directory by default. This is a long standing RMI problem, and the

solution is to either move your Application Server to a directory without a space in it, or to

configure Glassbox to avoid the issue. If a server has any jars or directories on its classpath that

have spaces in them, then you should add an additional Java start-up parameter in JAVA_OPTS

(or equivalent) for all the servers in the cluster:

Add the following Java start-up parameters to all the application servers in the cluster:

-Djava.rmi.server.useCodebaseOnly=true -Djava.rmi.server.codebase=http://localhost:8080

JMX Incompatibilities

Some servers include older versions of the JMX specification. For these servers, the easiest way to

view clustered Glassbox data is to use direct RMI. However, if you are interested in viewing

detailed data through JMX Remote, it might be possible to configure your server to use a newer

JMX or for older Weblogic servers, to use an adapter to overcome this issue.

As of this writing WebLogic 8.1 and earlier have an older version of JMX that is incompatible,

and we are researching alternatives. Please see the Glassbox Forums for the latest information.

VII. Using Glassbox

The Operation Summary Table

The Glassbox Web interface contains an operation summary table at the top, showing the

operations that the JVM has executed and their status, and details for the highlighted operation at

the bottom. Hitting control while clicking on an entry in the summary table opens a new

window showing the details.

 Page 11

Copyright 2006, Glassbox Corporation

Status

The status column tells at a glance whether the operation is performing normally (OK), exceeding

the performance goal (SLOW), or encountering an error (FAILING).

Analysis

For any operation that is slow or failing, you can look in the analysis column for a quick

summary of the cause of the problem.

Operation

Glassbox uses internal heuristics and a knowledge of common application frameworks to

determine an appropriate name for each operation.

Server

 Page 12

Copyright 2006, Glassbox Corporation

This column displays the name of the agent connection that was configured using the connection

panel. In a clustered environment, it allows you to distinguish operations on different servers.

Executions

The executions column indicates how many times this operation has run since the application

server was started or Glassbox’s statistics were last reset.

The Operation Details Area

The details area provides information relating to operations selected in the summary table. It

starts with an Executive Summary, outlining the problem’s severity, type and location, then

continues through a Technical Summary to the Technical Details providing relevant database,

remote service and code level details that allow DBAs and developers to locate and fix issues.

Hint: Control-click on a line in the summary table to open the details in a new window.

Executive Summary

The executive summary is contained in the first table that lives at the top of the detail pane. A

high level view of the problem, intended to give someone a quick view of what general area of

code is affected, and how severe the problem is.

Technical Summary

The technical summary provides management level details that include additional specifics in

paragraph form, including such things as what query or method was slow, what database is

affected etc. This is intended to give a 15-second summary of what the problem is, and to be

suitable to cut-and-paste into summary reports for management.

Technical Details

Technical details provide an engineer enough information to find and fix the problem. This

includes stack traces, the names of thread locks, SQL tables and other forms of exact and highly

technical information. It is suitable for a manager to mail to an engineer, or for QA or IT

professionals to use when filing a bug.

 Page 13

Copyright 2006, Glassbox Corporation

The details page also contains other helpful information that is not shown above:

Common Solutions

Shows common solutions that people have found to fix problems similar to the one you are

experiencing. These are hints and valuable as a rule of thumb, particularly if you are not familiar

with fixing a problem of the type diagnosed.

Ruled out potential problems

Lists the other types of problems Glassbox considered and eliminated as possible problems. If

troubleshooting a particularly sticky issue, it saves time to know what problems have already

been ruled out.

 Page 14

Copyright 2006, Glassbox Corporation

Remote Data through JMX Consoles

Glassbox agent supports using popular JMX Consoles to connect to a monitored server to view

detailed statistics about the performance of operations and resources they use. You can use a tool

like the Java 5 JConsole to view this information. If Glassbox is running correctly on a server and

the JMX Remote connector is working properly, you can view data by running the following

command:

jconsole service:jmx:rmi:///jndi/rmi://localhost:7232/GlassboxTroubleshooter

You can then browse into the MBeans tab and see more data inside the stats section beneath

Glassbox:

VIII. Open Source
Glassbox is an open source project, it is free to download and run. It is made available under the

Lesser Gnu Public License. This makes it free to use as a library without imposing restrictions on

using applications as long as they don’t depend on changes to it.

If you might be interested in contributing to Glassbox, please see our website at

www.glassbox.com and click on ‘get involved’.

Visit the Glassbox licensing page at:

 Page 15

Copyright 2006, Glassbox Corporation

http://www.glassbox.com/glassbox/Licensing.html or

http://www.glassbox.com/glassbox/OSglassbox/Licensing.html

IX. Getting Help and Reporting Problems
If you’re encountering problems using Glassbox, please visit our website and community forums

at www.glassbox.com/forum/forum/listforums.

X. Logging
Glassbox uses Jakarta Commons Logging 1.1 by default. However, if the application server

comes with a version of Commons Logging it will use that instead. In general, to configure

Glassbox logging, you need to configure your application server logging system. We list example

values below to add to a log4j.xml and logging.properties file to best configure Glassbox logging

for servers that are using log4j or Java.util.logging respectively.

Log4j.xml Edits for Log4J

 <appender name="glassbox"
class="org.apache.log4j.RollingFileAppender">
 <param name="File" value="glassbox.log"/>
 <param name="Append" value="true"/>
 <param name="MaxBackupIndex" value="5"/>
 <param name="MaxFileSize" value="10MB"/>
 <layout class="org.apache.log4j.PatternLayout">
 <param name="ConversionPattern" value="%d{DATE} %-6r [%t]
%-5p %c %x - %m %n"/>
 </layout>
 </appender>

 <appender name="diagnostics"
class="org.apache.log4j.RollingFileAppender">
 <param name="File" value="glassbox-diagnostics.log"/>
 <param name="Append" value="true"/>
 <param name="MaxBackupIndex" value="5"/>
 <param name="MaxFileSize" value="10MB"/>
 <layout class="org.apache.log4j.PatternLayout">
 <param name="ConversionPattern" value="%d{DATE} %-6r [%t]
%-5p %c %x - %m %n"/>
 </layout>
 </appender>

 <appender name="iterations"
class="org.apache.log4j.RollingFileAppender">
 <param name="File" value="glassbox-iterations.log"/>

 Page 16

Copyright 2006, Glassbox Corporation

 <param name="Append" value="true"/>
 <param name="MaxBackupIndex" value="5"/>
 <param name="MaxFileSize" value="10MB"/>
 <layout class="org.apache.log4j.PatternLayout">
 <param name="ConversionPattern" value="%m %n"/>
 </layout>
 </appender>

 <category name="org.springframework">
 <priority value="WARN" />
 </category>
 <category name="org.springframework.beans">
 <priority value="INFO" />
 </category>
 <category name="org.springframework.remoting">
 <priority value="INFO" />
 </category>
 <category name="org.springframework.jmx">
 <priority value="INFO" />
 </category>
 <category name="log4j.logger.uk.ltd.getahead.dwr">
 <priority value="WARN" />
 </category>
 <category name="glassbox">
 <priority value="INFO" />
 <appender-ref ref="glassbox"/>
 </category>
 <category name="glassbox.track.exceptions" additivity="false">
 <priority value="DEBUG" />
 <appender-ref ref="exceptions"/>
 </category>

 <category name="glassbox.track.diagnostics" additivity="false">
 <priority value="DEBUG" />
 <appender-ref ref="diagnostics"/>
 </category>

 <category name="glassbox.track.diagnostics.iterations"
additivity="false">
 <priority value="DEBUG" />
 <appender-ref ref="iterations"/>
 </category>

Logging.properties Edits for Java.Util.Logging

glassbox.installer.level=FINEST
uk.ltd.getahead.dwr.level=WARNING
org.springframework.level=WARNING
org.springframework.beans.level=INFO
org.springframework.remoting.level=INFO
org.springframework.jmx.level=INFO

glassbox.track.diagnostics.level=FINEST
glassbox.track.diagnostics.handler=java.util.logging.FileHandler

 Page 17

Copyright 2006, Glassbox Corporation

glassbox.track.diagnostics.handler.formatter=java.util.logging.SimpleFo
rmatter
glassbox.track.diagnostics.handler.append=true
glassbox.track.diagnostics.handler.pattern=/glassbox_diagnostics.log

glassbox.track.diagnostics.iterations.level=FINEST
glassbox.track.diagnostics.iterations.handler=java.util.logging.FileHan
dler
glassbox.track.diagnostics.iterations.handler.formatter=java.util.loggi
ng.SimpleFormatter
glassbox.track.diagnostics.iterations.handler.append=true
glassbox.track.diagnostics.iterations.handler.pattern=/glassbox_iterati
ons.log

XI. Custom Glassbox Monitors
Glassbox builds on the load-time weaving infrastructure of AspectJ. This makes it easy to add a

custom monitor to Glassbox. For example, you can simply extend the Glassbox definition of

operations by creating a new XML file with these contents:

<aspectj>
 <aspects>
 <concrete-aspect name="ServiceProcessingMonitor"

 extends="glassbox.monitor.ui.TemplateOperationMonitor">
 <pointcut name="methodSignatureControllerExecTarget"
 expression="within(com.myco.service..*)"/>
 </concrete-aspect>
 </aspects>
</aspectj>

You can then add this file to a META-INF subdirectory of a directory on your classpath or add a

jar containing the file at the location META-INF/aop.xml. For Tomcat, you might just create the

directory common/classes/META-INF and install your custom aop.xml file there.

For more information about configuring AspectJ load-time weaving see also the following

resources:

• Next steps with aspects: Extending a library aspect

• Performance Monitoring with AspectJ, part 2: Deploying the Glassbox Inspector

• AspectJ Development Environment Guide: Load-Time Weaving

XII. Manual Installation

 Page 18

Copyright 2006, Glassbox Corporation

Agent (Server) Installation

Note: Glassbox provides support for unpacking files and generates recommended environment

settings in its automatic installer, even for servers it doesn’t recognize. If you want to configure

your installation and running process, we’d highly recommend you try using the automated

installer with a manual installation option and let the installer unpack the right configuration for

your VM and provide you with template start up options.

Manual or automatic installation of Glassbox on a Java application server broadly requires four

tasks that are specific to the application server.

1. Open the glassbox.war file and extract the Glassbox Monitor and AspectJ weaving jars to

the appropriate place on the application server.

a. Put the aspectjweaver.jar and glassboxMonitor.jar on the classpath for the server

and all applications. For example: /common/lib for tomcat or

/server/<SERVERNAME>/lib for JBoss. For some servers, this is done by adding

the jars to the CLASSPATH used to run the server.

b. For a Sun or IBM Java 1.4 VM, you will also want to create an adapter to enable

load-time weaving. To do this:

i. Extract aspectj14Adapter.jar and createJavaAdapter.jar from the

glassbox.war located in install/glassbox14.

ii. Run java -jar createJavaAdapter.jar using the Java version you will use to

run the server.

2. Configuring the application server's Java environment to set up the Glassbox Agent. You

need to enable the load-time weaving system and to define a directory where Glassbox

configuration files are stored. You can create this directory anywhere: by convention it is

often a subdirectory named glassbox of the server library directory.

a. For Java 1.5: your VM arguments must add a ‘-javaagent:’ option (notice it has a

colon, not an equals) to point to aspectjweaver.jar. For example, with Tomcat:
set JAVA_OPTS="-javaagent:<TOMCAT>\common\lib\aspectjweaver.jar"

"–Dglassbox.install.dir=:<TOMCAT>\common\lib\glassbox"

b. For a Sun or IBM Java 1.4 JVM: your VM arguments need additional boot

classpath entries and a system property. For example, with Tomcat:
set JAVA_OPTS="-Xbootclasspath/p:<UNPACK_DIR>\java14Adapter.jar" "-

Xbootclasspath/a:<UNPACK_DIR>\createJavaAdapter.jar;<UNPACK_DIR>\aspec

tj14Adapter.jar;<UNPACK_DIR>\aspectjweaver.jar" -

Daspectwerkz.classloader.preprocessor=org.aspectj.ext.ltw13.ClassPreProcessorAd

apter "–Dglassbox.install.dir=<UNPACK_DIR>"

c. For a BEA JRockIt 1.4 JVM: your VM arguments need an additional –

Xmanagement option. For example, with Weblogic:
set JAVA_OPTIONS=-Xmanagement:class=org.aspectj.weaver.loadtime.JRockitAgent "–

Dglassbox.install.dir=<SERVER>\lib\glassbox"

3. Add the glassbox.war file to your application server as any other webapp and run it.

4. Point your browser at the glassbox webapp, and generate some load to monitor.

5. Configure for clustered use. After you get Glassbox working, you may need to modify

two additional parameters to support clustered use.

a. On Unix or Linux: Unix systems require setting java security parameters for

opening external RMI ports. You need to define environment variables for

java.rmi.server.hostname and java.security.policy (see example below).

 Page 19

Copyright 2006, Glassbox Corporation

b. If there are spaces in your CLASSPATH. Java RMI has a bug in handling

CLASSPATH file paths with spaces in them. If you have deployed a server with

jars or directories with spaces in the classpath (e.g., to "c:\Program Files\Apache

Software Foundation\..."), then you need to configure RMI codebases by setting

system properties with arguments like -

Djava.rmi.server.codebase=http://localhost:8080 and -

Djava.rmi.server.useCodebaseOnly=true

Example Manual Agent Installation - Apache Tomcat on Java 5 JVMs

The installation location of the Apache Tomcat instance is referred to as <TOMCAT>.

We recommend that you install Glassbox as the same User who installed Tomcat, this avoids any

permissions problems around Tomcat or Glassbox writing log files.

1. Verify that your app deploys on Tomcat and can be run. Glassbox only helps diagnose

problems with successfully deployed and running applications.

2. Download the glassbox.war file to your application server machine and unzip it (this is

only required for manual installation: automatic installation extracts and copies files

automatically).

3. Copy the following jars from install directory in glassbox.war to

<TOMCAT>/common/lib:

<TOMCAT>/common/lib

• aspectjweaver.jar

• glassboxMonitor.jar

4. Add a Java startup variable "-javaagent" to your environment by setting the JAVA_OPTS

environment variable:

On Windows

In the System control panel applet, add a JAVA_OPTS environment variable and set it to:

-javaagent:<TOMCAT>\common\lib\aspectjweaver.jar

Or you can set the value in the config file, for example add the following line toward the

bottom of your setClasspath.bat file:

set JAVA_OPTS=-javaagent:<TOMCAT>\common\lib\aspectjweaver.jar

On Unix or Linux

export JAVA_OPTS=

"-javaagent:<TOMCAT>/common/lib/aspectjweaver.jar"

 Page 20

Copyright 2006, Glassbox Corporation

On Cygwin

 Please look at the windows instructions and change the file separators appropriately.

(You can, of course, define these variables in a configuration file. Remember to replace

<TOMCAT> with the full path.)

5. Clustered Security Permission on Unix or Linux Only: Unix systems require setting

java security parameters for opening external RMI ports. To allow external RMI access,

add the following definitions to the JAVA_OPTS environment variable:

-Djava.rmi.server.hostname=<hostname>

 -Djava.security.policy=<TOMCAT>/common/lib/glassbox/java.policy

We included a sample java.policy file for use if you do not have one already.

If you have an existing policy file, you should add the following lines to your already

existing java.policy file and make sure that your –Djava.security.policy environment

variable listed above points to your already existing file.

grant {

permission java.net.SocketPermission "*:1024-65535", "connect,accept";

};

6. Restart your application server. Startup will take longer as the application server weaves

in Glassbox instrumentation.

7. Confirm that the application server console says “Glassbox Agent has started

successfully.”

Example Manual Agent Installation - Apache Tomcat on Java 5 JVMs

The installation location of the Apache Tomcat instance is referred to as <TOMCAT>.

We recommend that you install Glassbox as the same User who installed Tomcat, this avoids any

permissions problems around Tomcat or Glassbox writing log files.

8. Verify that your app deploys on Tomcat and can be run. Glassbox only helps diagnose

problems with successfully deployed and running applications.

9. Download the glassbox.war file to your application server machine and unzip it.

10. Copy the following jars from install directory in glassbox.war to

<TOMCAT>/common/lib:

<TOMCAT>/common/lib

• aspectjweaver.jar

• glassboxMonitor.jar

 Page 21

Copyright 2006, Glassbox Corporation

11. Create a glassbox directory at <TOMCAT>/common/lib/glassbox

12. Add a Java startup variable "-javaagent" to your environment by setting the JAVA_OPTS

environment variable and add a –Dglassbox.install.dir to point to the directory you just

created above:

On Windows

In the System control panel applet, add a JAVA_OPTS environment variable and set it to:

-javaagent:<TOMCAT>\common\lib\aspectjweaver.jar –

Dglassbox.install.dir=<TOMCAT>\common\lib\glassbox

Or you can set the value in the config file, for example add the following line toward the

bottom of your setClasspath.bat file:

set JAVA_OPTS=-javaagent:<TOMCAT>\common\lib\aspectjweaver.jar –

Dglassbox.install.dir=<TOMCAT>\common\lib\glassbox

On Unix or Linux

export JAVA_OPTS=

"-javaagent:<TOMCAT>/common/lib/aspectjweaver.jar"

On Cygwin

 Please look at the windows instructions and change the file separators appropriately.

(You can, of course, define these variables in a configuration file. Remember to replace

<TOMCAT> with the full path.)

13. Clustered Security Permission on Unix or Linux Only: Unix systems require setting

java security parameters for opening external RMI ports. To allow external RMI access,

add the following definitions to the JAVA_OPTS environment variable:

-Djava.rmi.server.hostname=<hostname>

 -Djava.security.policy=<TOMCAT>/common/lib/glassbox/java.policy

We included a sample java.policy file for use if you do not have one already.

If you have an existing policy file, you should add the following lines to your already

existing java.policy file and make sure that your –Djava.security.policy environment

variable listed above points to your already existing file.

grant {

permission java.net.SocketPermission "*:1024-65535", "connect,accept";

 Page 22

Copyright 2006, Glassbox Corporation

};

14. Restart your application server. Startup will take longer as the application server weaves

in Glassbox instrumentation.

15. Confirm that the application server console says “Glassbox Agent has started

successfully.”

