
Mint Project User Guide:

This User Guide is intended to help developers understand the purpose, layout,
and function of Mint Project 1.0. This guide is intended for new programmers, as
well as programmers who are familiar with current programming languages
(specifically Objective-C, and JavaScript). Like Mint Project, this User Guide is a
work in progress, please check <http://www.mintsoftware.com> for updates.

Contents:

1. What Is Mint Project?
a. Application Creation Tool

2. The Interface
3. Targets, and Classes, and Members, Oh My:
4. Mint Basic Language

© Mint Software 1999-2010

http://www.mintsoftware.com
http://www.mintsoftware.com

1. What is Mint Project:

Mint Project is designed to aid in Application Development, currently for the
Mac OS X platform, tho other platforms are expected to be supported, as there
is a lot of interest in iOS (previously iPhone OS) and HTML5/JavaScript. At its core,
Mint Project is a ‘project organizer’ and IDE (Integrated Development
Environment).

a. Application Creation Tool

Mint Project is designed to truly cater to the needs of developers. Currently,
developers of Mac OS X, iOS, et cetera create programs in Objective-C
language and Xcode which require the usage of Header (.h) and
Implementation (.m) files, usually with each file holding the code for an
individual class or group of related classes. For small programs, this is not a
problem; however, for larger projects where there are many hundreds of classes
and functions and methods, this can become a headache. Mint Project solves
that problem by allowing you to visually organize classes, methods, class
methods, and properties instead of having to look at pages and pages of code
or flipping between Header and Implementation files (See The Interface).

Mint Project does not use the Objective-C language, instead it takes advantage
of BASIC (Mint Basic); see Section 4 for more information on Mint Basic.

2. The Interface:

© Mint Software 1999-2010

The interface is composed by regions of panes that adjust themselves to the
currently selected project item; however it can be generalized into four different
regions.

1. The Toolbar (yellow) which contains all the buttons necessary to the project.
2. The Project Browser (green), which contains all the classes, folders, and

targets.
3. Tabbed Area (blue) which allows you to have several classes, targets, or build

result panels open.
4. Member Inspector (red) which adjusts its self as you select items.

The most versatile region is the Tabbed Area which shows the most important
pane, a class editor which is where the real work gets done in Mint Project. It
allows you to organize a class and its members. In this panel you are allowed to
add methods (or class methods), properties, ‘events’ and ‘objects,’ ‘value
setters,’ ‘object actions.’

3. Targets, and Classes, and Members, Oh My:

This section describes the two main project members: Targets and Classes (and
class members).

a. Targets:

© Mint Software 1999-2010

Targets are items which can be added to a project and allow you to setup the
specifications for a build-product. Currently, a target holds the specifications for
Platform, Architecture, Frameworks, Compiler, Active Classes, and Resources.

Two supported platforms are expected to make it into the final version of Mint
Project: Mac OS X, iOS (Formally iPhone OS), and HTML5 being added later. For
each of these platform types you can select which architecture (processor) can
or should be used, which classes should be included during compile, and which
resources should be added to the final product (Application or Framework
bundle). Each of these features work slightly different for each platform
(especially for HTML5).

•Notes about Mac OS X and iOS: On these two platforms, Mint Project
creates executables which use the Objective-C runtime. A runtime is not a
language, however it has paradigms which parallel the Objective-C
language. These paradigms are discussed in the Section 4: Mint Language
and in the next subsection (b). It is important to understand that altho Mint
Basic is not Objective-C it must adopt particular features in order to sensibly
interface with the Obj-C Runtime.

b. Classes and Their Members (Within the context of the Objective-C runtime)
This section details the specification for Classes and how they function on
particular Platforms. This information is useful for those who program in
Objective-C and wish to understand how Mint Project has compensated for
certain design paradigms in Objective-C and the Objective-C (ObjC) Runtime.

The Cocoa environment on Mac OS X or iOS uses the Objective-C Runtime, thus,
programs generated with Mint Project must work well with this runtime. When
classes are generated for the Objective-C Runtime, they inherit all the abilities,
rights, and responsibilities of an Objective-C class (just as it would be if it was
written directly in Objective-C).

•Properties are instance variables (Ivar) that are coupled with a property (in
the sense of Objective-C’s @property, @synthesize directives).

•Methods work just as they do in Objective-C, selectors and all. When adding
a method, you are given the ability to name the parameters as in the
following example:

© Mint Software 1999-2010

This method’s selector will be myFunction:forY:

There are several member types in Mint Project which get special
considerations. Four of them are detailed here.

•Objects are instances of a class which are assigned to an Instance Variable
(ivar) and also have a property to access them. They work just as properties
work except they are instantiated at runtime and can be sent to a method
(owned by the encompassing class that take one parameter). A good
example of this is a Object whose super class is a NSView who needs to be
set to “addSubview”. (In Mint Project, any class who is sent to the method
addSubview is visible in the Layout Editor). Objects generate the following
code (this object has been set to be a NSView in another panel)

…//the following code exists in the declaration of the Class, and not in a function.
subView1 as NSView // (instance variable)
…//this code appears in a method that is auto generated by the Mint IDE, a method
that is not visible to the user.
subView1 = NSView.alloc().init()
self.addSubview(myNSView)

•Value Setters are special members that can be added to a class, or object.
Their function is to call a method on that object after its creation. A Value
Setter is given a method, and group of parameters to send to that method.
They create the equivalent of the following code (in blue)

© Mint Software 1999-2010

subView1 = new NSView
subView1.setFrame(NSMakeRect(10,10,22,60)
self.addSubview(subView1)

Value Setters who have only one parameter also appear in the Member
Inspector on the right:

•Object Actions are basically methods which are owned by the class but are
assigned to the object under which it is made. Such methods can only be
used with certain classes but currently Mint Project will not block you from
adding an action message to a object. Classes with which action messages
can be used define two methods setAction: and setTarget:. In this case the
target is the class, and the action is the Object Action.

•Events (events are currently not working in the betas) are a bit more
complicated because they auto-generate many parts: two ivars that hold a
pointer to a selector and target (object), a method with the name of the
event which calls the selector on the target using an NSInvocation. When a
class or object inherits from a class that has declared an Event it sets the
selector ivar to its implementation of the Event and the selector to the
name of that implementation. This is necessary for objects which are not
actual subclasses but can handle events. Events are generated with names
which can not be known before compile, so it is recommended to only use
events using the “raiseEvent” keyword.

raiseEvent mouseDown(x,y)
//or
myObject.raiseEvent mouseDown(x,y)

4. Mint Basic Language

Mint Basic is an implementation of BASIC. Users who have programmed in
products such as Real Studio (formally REALbasic) or Visual Basic, with some
exceptions, should be right at home in Mint Project.

© Mint Software 1999-2010

a. Intrinsic Datatypes:
Mint Basic supports most of the datatypes that Objective-C or C support such as
integer (int), boolean, double, IMP, id, SEL, et cetera.

b. Declaring Variables
In Mint Basic, variables are declared using the following syntax

// Mint Basic
dim i as integer
dim myNSView as NSView

c. Setting Variables or Properties, and calling Methods

i = 10
myNSView = NSView.alloc().initWithFrame(NSMakeRect(0,0,100,100))

d. If…Then Statements

if i=10 or i=0 then
//some code
elseif i=3 then
//some code
end if

e. For…While…Using…Next Loop

for i=10 while i<100 using i=i+1
//some code
next

f. While…Wend

while i<10
//some code
wend

There are, however, some differences between Mint Basic and other
implementations of BASIC. Such differences were necessary to make Mint Basic
function in an Objective-C environment.

One such difference stems from the fact that the Objective-C runtime uses
‘selectors’ to send messages which invoke a particular implementation for a
method. Selectors provide the feature to name parameters, thus Mint Basic

© Mint Software 1999-2010

needs to allow naming parameters in order to interface properly with the
Objective-C runtime. Examine the following code:

// Mint Basic
myNSView.addToolTipRect(aRect, owner: anObject, userData: userData)

// Objective-C
[myNSView addToolTipRect:aRect owner: anObject userData: userData]

g. Other Keywords

Mint Basic has many keywords including new, raiseEvent, return, self, me.

© Mint Software 1999-2010

