

Partitioned Query
for MySQL

a managed .NET component

Developer’s Guide

Version 1.0

Copyright © 2003
Inspireon Software, LLC

www.InspireonSoftware.com

Table of Contents

Introduction...1

Technical Support...1

Building a Shared-Nothing MySQL Cluster...2

Using the Partitioned Query for MySQL Component ...4

Important Notes Regarding MySQL Queries...10

Known Issues with Supported Data Providers ...12

Working with Popular .NET Reporting Components and Tools ..13

License Agreement ... Appendix A

Partitioned Query for MySQL – Developer’s Guide Page 1

Introduction

Partitioned Query for MySQL is a managed .NET component that brings the high-performance
and scalability of distributed partitioned queries to the MySQL database server. With this
powerful, innovative component, .NET developers can bring a new level of performance and
scalability to their data warehousing, reporting, business analytics, and business intelligence
applications at significantly reduced costs when compared to developing similar applications
using the Enterprise versions of the Oracle, IBM DB2, or Microsoft SQL Server databases.

Utilizing a shared-nothing approach to database clustering, developers can easily build a cluster
of MySQL databases to dramatically improve the performance and response time of user
queries, and can easily and affordably scale-out their applications as data and user volumes
grow.

The combination of the robust .NET development environment, the powerful, fast, low-cost
MySQL database server, and the Partitioned Query for MySQL component brings a new level of
price-performance to the data warehousing arena.

This Developer’s Guide will take you through the basics of how to build a shared-nothing cluster
of MySQL database servers to house your partitioned data, and how to utilize the Partitioned
Query for MySQL component in your .NET data warehousing/reporting applications.

Important: Please read the section entitled “Important Notes Regarding MySQL Queries” on
page 10 before you use the Partitioned Query for MySQL component in your projects, as it
contains important information on some of the restrictions on SQL commands that can be used
in a partitioned query.

Technical Support

Technical support for the Partitioned Query for MySQL component is available through our
online Knowledge Base at www.InspireonSoftware.com - where you can find answers to
common questions and problems, and also submit technical support requests. You can also
send a technical support request via e-mail to Support@InspireonSoftware.com.

Company and product names are trademarks or registered trademarks of their respective companies.

Partitioned Query for MySQL – Developer’s Guide Page 2

Building a Shared-Nothing MySQL Cluster

A shared-nothing MySQL database cluster is simply a collection of independent servers running
the MySQL database server, and connected by a high-speed switched Ethernet network. Each
node of the cluster runs the MySQL database server as a standalone application, and the
MySQL database server on each node is configured with the same version of MySQL, and the
same user logins and security. For best performance, the nodes of the cluster are connected to
the same Ethernet switch, and Gigabit Ethernet is recommended to minimize the time required
to move data from one node to another. The Partitioned Query for MySQL component is
optimized to minimize the amount of data transferred between nodes for summary-type queries,
so that 100-Megabit Ethernet switches can be used and still deliver good performance if Gigabit
Ethernet is not a viable option (depending on your data model and the type of query).

An example of a shared-nothing MySQL database cluster would look like the following:

Because the MySQL database server is available for a variety of operating systems, it is
possible to configure a cluster using different operating systems on each node. However, for
ease of manageability, it is usually recommended that each node of the database cluster run the
same operating system – but it is not a requirement. The only requirement is that each node be
running the same version of MySQL, and be configured with identical security and user logins.
One of the most cost-effective hardware and operating system combinations for running MySQL
is to utilize industry-standard Intel or AMD-based servers running Linux. The Partitioned Query
for MySQL component currently supports the MySQL database server versions 3.23.51 through
3.23.57, and 4.0.12 through 4.0.13. For the most up-to-date MySQL version compatibility
information, please visit our website at www.InspireonSoftware.com.

Gigabit Ethernet Switch

- Dual Intel P4 Xeon
- 2GB RAM
- RAID 5 Array
- Gigabit Ethernet
- Linux 2.4
- MySQL 4.0.12

- Dual Intel P4 Xeon
- 2GB RAM
- RAID 5 Array
- Gigabit Ethernet
- Linux 2.4
- MySQL 4.0.12

- Dual Intel P4 Xeon
- 2GB RAM
- RAID 5 Array
- Gigabit Ethernet
- Linux 2.4
- MySQL 4.0.12

- Dual Intel P4 Xeon
- 2GB RAM
- RAID 5 Array
- Gigabit Ethernet
- Linux 2.4
- MySQL 4.0.12

- Dual Intel P4 Xeon
- 1GB RAM
- RAID 5 Array
- Gigabit Ethernet
- Windows 2003 Server
- .NET Framework

Web Server

Database Cluster

Partitioned Query for MySQL – Developer’s Guide Page 3

Building a Shared-Nothing MySQL Cluster (continued)

Once you have configured the hardware, operating systems, and MySQL database servers, and
connected the servers to the Ethernet switch, you then need to partition your database across
the nodes of the cluster so that the amount of data on each node is roughly the same. The data
can be partitioned by date, geography, company organization, or any other method that makes
logical sense based on your data model. When partitioning your database, you need to make
sure that all related/child table(s) are partitioned along the same boundaries that you select to
partition your main table(s), so that all related data exists on the same server where the
partitioned main table(s) are going to be located. If you use static lookup tables where all
values are relevant to any query regardless of partition boundary, then those tables should be
copied or replicated to each partitioned database. The use of the SELECT ... INTO OUTFILE
and LOAD DATA INFILE statements are very useful for partitioning an existing database, as
they can quickly and efficiently extract the data from the existing database, and load it into the
new partition.

The partitioning process will be different for each data warehousing scenario depending on your
specific data model, but once you have invested the time to develop a partitioning strategy that
effectively balances the data load across your cluster servers, the payoff in improved
performance and scalability will be worth it.

In most data warehousing scenarios, one node would be designated to house the most recent
data, and that node is where “new” data is appended on a periodic (usually daily or weekly)
basis using your data transformation/load process. The remaining nodes would house historical
“static” data that does not change once it has been loaded. This partitioning approach saves
valuable time in loading new data, as the database indexes only need to be updated on the
partition containing the most recent data, not on the entire database on all partitions –
significantly reducing your data load window. This approach also saves time in backing up your
database, as only the most recent partition needs to be regularly backed up. The historical
partitions only need to be backed up one time when they are first loaded. As your data and user
volumes grow, you can add additional servers to your cluster to improve the performance of
your application.

Once the database is partitioned across the nodes of the cluster, the Partitioned Query for
MySQL component is used to execute queries against all cluster nodes in parallel and return the
aggregated results as either a DataReader or DataSet object. Because only a portion of the
database exists on each node, the total time required to run most queries is significantly
reduced when compared to running the same query against a single, large database on a single
server. The Partitioned Query for MySQL component takes care of all of the parallel processing
details for you. All you need to do is pass to the component the SQL statement that contains
the query you need to execute, and the results are automatically returned in either a
DataReader or a DataSet object. You can then use the returned object to format the resulting
data for a web page, to pass the object to a reporting tool like ActiveReports for .NET or Crystal
Reports for .NET, or to pass the object to another .NET component for further processing and/or
display purposes.

If you want to improve the reliability of a shared-nothing cluster, you can setup one or more
stand-by servers configured identically to your cluster nodes that you can bring online in case
one of your cluster nodes should fail for some reason. For maximum failover capabilities, you
could create a stand-by node for each cluster node, with each stand-by node having an identical
copy of the corresponding cluster node’s database.

Partitioned Query for MySQL – Developer’s Guide Page 4

Using the Partitioned Query for MySQL Component

The Partitioned Query for MySQL component is a 100% managed-code component for the
.NET framework. It is designed to be fast, efficient, and easy to use, so that you can quickly
and easily start using it in your projects.

Installing the Component

To install the component on your .NET development workstation, simply place the
MyPQuery.dll assembly in the bin folder of your application, and add a reference to the
assembly to your project. If you are using the Evaluation version of the component that is
available as a free download, you are allowed to use this fully-functional Evaluation version of
the component for up to 30 days. After the 30-day Evaluation period, you must either purchase
a License to continue using the product, or remove it from your computer(s). To purchase a
License for the product, please visit our website at www.InspireonSoftware.com (the product
is licensed on a per-developer basis).

To install the Partitioned Query for MySQL component on your web or application server, simply
copy the MyPQuery.dll assembly to the bin folder where you have installed your application on
the server.

Please see Appendix A for a copy of the License Agreement.

Developing with the Partitioned Query for MySQL Component

Developing applications with the Partitioned Query for MySQL component is straight-forward
and easy.

Once you have installed/configured your MySQL database cluster and partitioned your
database, you need to add a table to the database on each cluster node that configures the
nodes of your cluster for the Partitioned Query for MySQL component. This table must be
named partitionedqueryconfig (all lowercase), and must contain the following columns:

 Column Name Column Type
 server varchar(64)
 database varchar(64)

A MySQL script to create this table (named partitionedqueryconfig.sql) can be found in the ZIP file you
downloaded for this component. You can use this script to create the table on each server node of your
cluster.

Once you have created the partitionedqueryconfig table, you need to add a row to the table
for each server node in your MySQL database cluster. For example, your table might look like
the following (see next page):

Partitioned Query for MySQL – Developer’s Guide Page 5

 server database
 mysql001 mydatabase
 mysql002 mydatabase
 mysql003 mydatabase
 mysql004 mydatabase

The entries in this table should be the same on each server.

Note: see page 9 in this manual for information on temporary tables used by the Partitioned Query for
MySQL component, and an additional configuration step required to support these temporary tables.

Now that you have created and populated this configuration table on each cluster node, you can
begin using the component in your project by adding a reference to the component to the
project in Visual Studio .NET.

Once you have added a reference to the component to your project, you need to instantiate an
instance of the MyPQuery.Query class as follows:

�������

�

��������	
�������������	
����	
������

�

�	�����

�

���	
����	
��������	
�������������	
����	
�������

The Partitioned Query for MySQL component has just one method named RunQuery. The
RunQuery method is used to execute the SQL SELECT statement for you query, and return the
result set as either a DataReader or a DataSet object. The RunQuery method has six
parameters, and returns an empty string to indicate a successful query execution, or a string
containing the error code and error message if an error occurs.

���
��
�� �������
�� ��!�"��� 	# ����������

The parameters to the RunQuery method are as follows:

���������� ������������ ����������

��������� !$����"���%������"��������&���'�
�������������������$��

�� 	#�����&������������������(��"�'���

)��
��

����������� !$��������������&*����%����$���� 	#�����&���� ��%�������

�������� !$�����������&*���� ��%�������

��������� !$�������������������� ����&*����
����������
����$��

���
�����%��$��+
����

��%�������

������������� !$����"���%��&*����"������������
�� ���,����$���

���
�� ��!�"�������������������
�� ��!�"������ ���

)��
��

������������ !$�� 	#�����������%����$��+
��������(��
���)��
��

Partitioned Query for MySQL – Developer’s Guide Page 6

The Partitioned Query for MySQL component currently supports the following data providers to
access the MySQL database server:

� MyODBC v3.51 with ODBC.NET (using Microsoft.Data.Odbc.dll)
� dbProvider v1.6 by eInfoDesigns (dbProvider.dll) www.eInfoDesigns.com
� MySQLDirect.NET v1.60 by Core Lab (CoreLab.MySql.dll) www.crlab.com

The assembly file for the data provider you use must be located in your project’s bin folder in order to
work correctly with the MyPQuery.dll assembly. The use of any other data provider will result in an error
being returned from the RunQuery method.

The type of data provider you are using to access MySQL is passed as the Provider parameter
of the RunQuery method (see above). Valid values for the Provider parameter are:

��������!�"��-�.��/!�

��������!�"���&���������

��������!�"���� 	#�������

Before you can call the RunQuery method of the MyPQuery.Query class, you need to
instantiate your Connection and Command objects for the provider you will be using.

For example, if you are using the MyODBC 3.51 driver with ODBC.NET, you would instantiate
your objects as follows:

�������

�

����������������������-�&��������������

�������������������-�&�����������

�

�	�����

�

-�&������������������������������-�&���������������

-�&������������������������-�&������������

To instantiate the Connection and Command objects for a different supported data provider, refer to the
documentation provided with that data provider.

If you want to have the query results returned in a DataReader object, then you also need to
declare a variable for your DataReader object as follows:

�������

�

������������������-�&������������

�	�����

�

-�&�������������������������

To declare a DataReader object for another data provider, refer to the documentation provided with that
provider.

Partitioned Query for MySQL – Developer’s Guide Page 7

If you want to have the query results returned in a DataSet object, then you need to instantiate a
new instance of a .NET DataSet object as follows:

�������

�

��������� ������������� �����

�	�����

�

���� �������� ������������� ������

Once you have declared these objects, all you need to do before calling the RunQuery method
is to set the ConnectionString property of your Connection object, and set the Connection
property of your Command object.

For example:

�������

�

���������������������� ����'���0�������1�� 	#�-�.��2�34�������5�6�7�8�

�������������������0 ���������+�994�����&����������&����:;��

��<��""""6�

�

����������������������������������

�

�

�	�����

�

���������������������� ����'���0�������1�� 	#�-�.��2�34�������5�6�=�

�������������������0 ���������+�994�����&����������&����:;��

��<��""""6��

�

�����������������������������������

�

The Server that you use in your ConnectionString can be any one of the server nodes in your
MySQL database cluster. You can choose to always connect to the same server, or you can
choose to randomly connect to any one of the nodes of your cluster to distribute the connection
load among all nodes of your cluster to improve the overall performance of your application.

Important Notes:

The User ID and Password that you use in your ConnectionString must also exist in the security
configuration on each MySQL database node in your cluster. The Partitioned Query for MySQL
component will use this same User ID and Password to connect to each node in the cluster. For the
ODBC.NET driver, you cannot use a DSN to connect to the database. You must use a DSN-less
connection, and provide the Server, Database, UID, and PWD parameters in the connection string.

Once you have set the ConnectionString property of your Connection object, do not call the Open()
method of the Connection object. In order for the Partitioned Query for MySQL component to be able to
connect to all nodes of your MySQL database cluster, it needs to be able to read the ConnectionString
property and call the Connection.Open() method. If you call the Open() method of your Connection
before you call the MyPQuery.RunQuery method, an error will be returned.

Partitioned Query for MySQL – Developer’s Guide Page 8

Now that you have set the ConnectionString property of your Connection object, you can call
the RunQuery method of the MyPQuery.Query class as follows:

�������

�

� ����� 	# ����������� ����'�

� ��������
����� ����'�

�

� � 	# �����������0 /#/�!����������� :�� ������
����0�7�8�

� � � � 0>�-�� �����0�7�8�

� � � � 0?�-:��.@�����������0�7�8�

� � � � 0-��/��.@�����������0�

�

����
���������	
�����
�	
������������!�"��-�.��/!��

� � � � � �������������

� � � � � ����������

� � � � � �������������

� � � � � ���
�� ��!�"��������������

� � � � � � 	# ����������

�	�����

�

� ����'�� 	# ����������

� ����'�����
����

�

� � 	# �����������0 /#/�!����������� :�� ������
����0�=�

� � � � 0>�-�� �����0�=�

� � � � 0?�-:��.@�����������0�=�

� � � � 0-��/��.@�����������0��

�

����
���������	
�����
�	
������������!�"��-�.��/!��

� � � � � ��%��������������

� � � � � ��%�����������

� � � � � ��%��������������

� � � � � ���
�� ��!�"��������������

� � � � � � 	# �����������

When the query has completed, you should check the return string to see if any errors occurred
in running the query. If no errors occurred, the return string will be an empty string (“”). If an
error occurred, the error number and error text will be returned in the return string, and the
DataReader or DataSet objects will have no data.

If no errors were returned, you can then use the results in the DataReader or DataSet to format
the data in a web page, or to pass the results to a reporting component such as ActiveReports
for .NET or Crystal Reports for .NET, or to another .NET component to format/display the
resulting data.

If you use a DataReader object for your results, you will need to call the Close() method of the
DataReader object to close the DataReader when you have finished with it, and you will also
need to call the Close() method of your Connection object when you have finished with it (the

Partitioned Query for MySQL – Developer’s Guide Page 9

Partitioned Query for MySQL component cannot close these objects, because they must remain
open in order for you to be able to access the rows of the DataReader).

If you use a DataSet object for your results, the Connection object is automatically closed when
the query has completed. There is no need for you to call the Close() method of your
Connection object (since a DataSet is a disconnected recordset type of object).

Temporary Tables

The Partitioned Query for MySQL component uses a temporary table when building the
aggregate results of a partitioned query. The component will randomly select a node of your
cluster to store this temporary table, so as to improve the overall performance of multiple users
running your application.

These temporary tables are created in a special database named partitionedqueryresults (all
lowercase) on each MySQL server node in your cluster. When you first configure the MySQL
database server on each node of your cluster, you need to create this special database named
partitionedqueryresults, and grant privileges to the User ID used in your Connection string to
grant the user CREATE, DROP, INSERT, and SELECT privileges to this database. For
additional performance, you can choose to locate this database on a different disk or volume
than your main database (please see to the MySQL documentation for instructions on how to
create or locate a database on a particular disk or volume).

If you use a DataSet object for your results, the temporary table is automatically removed after
the RunQuery method returns. However, if you use a DataReader object for your results, this
temporary table is not automatically removed, as it remains in use until you explicitly close your
DataReader object. Because of this, periodic maintenance is required to clean up any
temporary tables left behind by DataReader objects. If you use DataReader objects to return
the results of your queries, you should periodically delete any tables in the
partitionedqueryresults database on each node of your cluster to reclaim the disk space used
by these temporary tables. Alternatively, you could periodically drop and re-create the database
to quickly delete all existing tables (make sure to only perform this operation when no users are
accessing your application).

Partitioned Query for MySQL – Developer’s Guide Page 10

Important Notes Regarding MySQL Queries

Due to the complex nature of running queries in parallel across a partitioned database, the
Partitioned Query for MySQL component has a few restrictions on the SQL commands that can
be used in a distributed partitioned query as follows:

� Only SELECT statements are supported, as the component is designed for running
queries only. Any other data definition or data manipulation statements are not
supported (you should use your own code/components or other 3rd-party utilities to
add, update, and delete data from the databases).

� All columns in the SELECT statement must be explicitly defined. You cannot use the
wildcard * character to specify all columns from a table, as in:

� /#/�!�A�>�-��/�"�������

You must specify the specific columns you wish to retrieve, as in:

� /#/�!�/�"���������� �
��B��������>�-��/�"�������

It is worth noting that it is good practice anyway to specify the specific column names
required by your query, rather than using the wildcard * character - as it can improve the
performance of the query by avoiding a lookup in the data dictionary, and by minimizing the
return of unused/unneeded columns.�

� All computed columns (i.e. columns that use formulas, functions, or other
calculations) must be aliased. For example, you must use the following:

� /#/�!�;>�B�������CDE992F94F94D�D-�������D�D��������D�� ����������

� >�-��/�"�������

�

���������%:

� /#/�!�;>�B�������CDE992F94F94D�D-�������D�D��������D���

� >�-��/�"�������

�
It is good practice anyway to alias all computed columns so that you can refer to them by
their aliased column names in your code and reports.�

� Only the COUNT(*), SUM(expr), MIN(expr), and MAX(expr) aggregate functions are
supported. The COUNT(DISTINCT expr), AVG(expr), STD(expr), STD_DEV(expr),
BIT_OR(expr), and BIT_AND(expr) aggregate functions are not supported at this
time.

� The UNION and UNION ALL statements introduced in MySQL version 4.0.x are not
supported, as only a single SELECT statement can be issued in the query at this
time.

� Embedded comments in a SELECT statement are not supported at this time.

In addition, running MySQL in ANSI mode (by starting mysqld with the --ansi option) is not
supported at this time

Partitioned Query for MySQL – Developer’s Guide Page 11

Important Notes Regarding MySQL Queries (continued)

Note that you can get around the AVG(expr) limitation by including both the COUNT(*) and
SUM(expr) functions in your query, and then perform the calculation of the average in your
application code as in the following example:

�������������

�

 /#/�!���'����� :�� ������
���� �
�-% �������-:�!�A�� ���
�����

>�-�� �����

?�-:��.@���'����

-��/��.@���'����

�

�������

�

�����'�����
&���

�'����������������0
�-% ����6��G��������������0��
����6��

�	�����

�

��
&����'��

�'����������������0
�-% ����6��G��������������0��
����6���

It is also important to note that not all queries will run faster as distributed partitioned queries
across a cluster of databases. Some quick queries that can access a single or a few rows via
an index will actually take slightly longer to run as a distributed partitioned query – due to the
overhead involved in running the query in parallel across all of the cluster nodes. But on
average, many queries can run much faster as distributed partitioned queries, and you should
see significant overall improvement in query response times (depending on how many servers
you have in your cluster, how you have partitioned your database, and the nature of the queries
involved).

The Partitioned Query for MySQL component currently supports the MySQL database server
versions 3.23.51 through 3.23.57, and 4.0.12 through 4.0.13. For the most up-to-date MySQL
version compatibility information, please visit our website at www.InspireonSoftware.com.

Note: although we have attempted to accommodate all other combinations of MySQL keywords,
functions, literals, etc. that can occur in a SELECT statement, it is possible that some unique
combinations may not work correctly when executed as a partitioned query using the Partitioned Query
for MySQL component. In the case that you are unable to get a particular SELECT statement to work
correctly, or if the returned aggregated results are not accurate, please send us an e-mail at
Support@InspireonSoftware.com and we will attempt to help resolve the problem as quickly as possible.

Partitioned Query for MySQL – Developer’s Guide Page 12

Known Issues with Supported Data Providers

The Partitioned Query for MySQL component currently supports the following data providers to
access the MySQL database server:

� MyODBC v3.51 with ODBC.NET (using Microsoft.Data.Odbc.dll)
� dbProvider v1.6 by eInfoDesigns (dbProvider.dll) www.eInfoDesigns.com
� MySQLDirect.NET v1.60 by CoreLab (CoreLab.MySql.dll) www.crlab.com

The assembly file for the data provider you use must be located in your project’s bin folder in order to
work correctly with the MyPQuery.dll assembly. The use of any other data provider will result in an error
being returned from the RunQuery method.

The following is a list of known issues with the supported data providers:

MyODBC v3.51 with ODBC.NET

With the ODBC.NET provider, there is a known problem with the provider not being able to
handle the MySQL Decimal data type correctly. This known problem may raise an error if one
of the columns in your query is a MySQL Decimal data type (for further information on this
problem, please see the Microsoft Knowledge Base article #811239).

If you receive an error similar to the following:

/�����3��/��-��H9I99JK�H�� 	#KH-�.��2�34�������KH���+��FL�9�4EK�����������

�������"�������&
������������� 	#8�8�:�/�;���

then you should use the Double data type instead of the Decimal data type to avoid receiving an
error when using the ODBC.NET provider.

dbProvider

There are no known issues with this provider at this time.

MySQLDirect.NET

There are no known issues with this provider at this time.

Partitioned Query for MySQL – Developer’s Guide Page 13

Working with Popular .NET Reporting Components and Tools

The Partitioned Query for MySQL component can easily be used with popular .NET reporting
components and tools to increase the performance and scalability of solutions that utilize these
products when accessing MySQL databases. The following describes how to use some of
these popular tools with the Partitioned Query for MySQL component:

ActiveReports for .NET by Data Dynamics

ActiveReports for .NET by Data Dynamics supports binding a DataSet object as the data source
for a report at runtime. To use the Partitioned Query for MySQL component with an
ActiveReports for .NET report, all you need to do is set the DataSource property of the report to
the DataSet object that is returned from the call to the RunQuery method of the Partitioned
Query for MySQL component.

An example of binding a DataSet object as the data source for an ActiveReports for .NET report
can be found in the ActiveReports for .NET User Guide in the section titled “Binding Reports to
a Data Source”.

Additional information on ActiveReports for .NET can be found at www.datadynamics.com.

Crystal Reports for Visual Studio .NET / Crystal Reports v9 by Crystal Decisions

Crystal Reports for Visual Studio .NET and Crystal Reports v9 support reports that access
DataSet objects by passing the populated DataSet object to the Report Engine using the Report
Engine Object Model. You can populate the DataSet object by calling the RunQuery method of
the Partitioned Query for MySQL component, and then pass the resulting DataSet object to
Crystal Reports.

Documentation on using DataSet objects with Crystal Reports for Visual Studio .NET and
Crystal Reports v9 can be found in the Crystal Decisions Technical Briefs database at
http://support.crystaldecisions.com/docs.

Search the Technical Briefs database for documents with the file names crnet_adonet.pdf and
rtm_ReportingOffADONETDataSets.pdf.

Additional information on Crystal Reports can be found at www.crystaldecisions.com.

Partitioned Query for MySQL – Developer’s Guide Appendix A

Appendix A – License Agreement

LICENSE AGREEMENT

You should carefully read the following terms and conditions before using the Partitioned Query for
MySQL software (the “Product”). Your use of the Product indicates your acceptance of this License
Agreement. Do not use the Product if you do not agree with the License Agreement.

The Product is proprietary to Inspireon Software, LLC and is protected by United States Federal
Copyright Law, international treaty provisions, and applicable laws of the country in which it is used.
Inspireon Software, LLC retains the title to and ownership of the Product. You are licensed to use this
Product under the following terms and conditions:

LICENSE:

The Licensee is defined as the individual software developer utilizing the Product. This License is not for
an entire company, but for a single developer. Each developer within your company that develops
applications using the Product must have a License in order to legally use the Product.

Evaluation Period: you are allowed up to 30 days from the date of first installation to evaluate the Product
at no charge. During this 30-day Evaluation Period, the Product has full functionality, with no limits on
features or capabilities. After 30 days from the date of first installation on any of your computers, you
must either purchase a valid License to continue using the Product, or you must remove the Product from
your computer(s) and cease using the Product. You are allowed to distribute the Product to other
developers so that they can evaluate the Product. When distributing the Product for evaluation, you must
distribute the entire ZIP file that you originally downloaded or received – which includes the component
assembly DLL, the Developer’s Guide, and the partitionedqueryresults.sql, License.txt, and Readme.txt
files. If the developers you send the Product to for evaluation continue to use the Product after their 30-
day Evaluation Period as defined above, they must either purchase a valid License, or remove the
Product from their computer(s) and cease using the Product.

Upon purchase of a valid License, Inspireon Software, LLC hereby grants the Licensee a non-exclusive
License authorizing the Licensee to use the Product on one or more computers at a time for development
purposes only. For applications that are developed for use within your company, the distribution of those
applications using the Product in a run-time environment is royalty-free requiring no additional license
fees for the Product. If you use the Product to develop applications for use outside of your company, then
a runtime License is required for each web or application server on which the application is deployed
outside your company.

RESTRICTIONS:

You may not distribute, rent, sub-license or otherwise make available to others the software or
documentation or copies thereof except as expressly permitted in this License without prior written
consent from Inspireon Software, LLC. In the case of an authorized transfer, the transferee must agree to
be bound by the terms and conditions of this License Agreement.

You may not remove any proprietary notices, labels, copyrights, and trademarks that appear on the
software or documentation.

You may not modify, de-compile, disassemble, reverse engineer or translate the software.

(continued on next page…)

Partitioned Query for MySQL – Developer’s Guide Appendix A

Appendix A – License Agreement (continued)

TERM:

You may terminate your License and this Agreement at anytime by destroying all copies of the Product
and Product Documentation. This License will also terminate automatically if you fail to comply with any
term or condition in this Agreement.

LIMITED WARRANTY:

This software and documentation are sold "as is" without any warranty as to their performance,
merchantability or fitness for any particular purpose. The Licensee assumes the entire risk as to the
quality and performance of the software. In no event shall Inspireon Software, LLC or anyone else who
has been involved in the creation, development, production, or delivery of this software be liable for any
direct, incidental or consequential damages, such as, but not limited to, loss of anticipated profits,
benefits, use, or data resulting from the use of this software, or arising out of any breach of warranty.

