
How-Tos
Version 5.1.6-1

This is a collection of How-Tos designed to make it easier to get started using Wing
with specific 3rd party tools and libraries for Python.

You can use these How-Tos to get set up quickly developing desktop UIs, web
applications, 2D and 3D movies and games, and to learn how to use Wing with other
libraries.

These How-Tos assume you are already familiar with the 3rd party library or
application and with Wing IDE. To learn more about Wing IDE see the Quick Start
Guide or Tutorial.

Wingware, the feather logo, Wing IDE, Wing IDE 101, Wing IDE Personal, Wing IDE
Professional, and "The Intelligent Development Environment" are trademarks or
registered trademarks of Wingware in the United States and other countries.

Disclaimers: The information contained in this document is subject to change without
notice. Wingware shall not be liable for technical or editorial errors or omissions
contained in this document; nor for incidental or consequential damages resulting from
furnishing, performance, or use of this material.

Hardware and software products mentioned herein are named for identification
purposes only and may be trademarks of their respective owners.

Copyright (c) 1999-2015 by Wingware. All rights reserved.

Wingware
P.O. Box 400527

http://wingware.com/doc/howtos/quickstart
http://wingware.com/doc/howtos/quickstart
http://wingware.com/doc/intro/tutorial

Cambridge, MA 02140-0006
United States of America

Contents
How-Tos 1

Wing IDE Quick Start Guide 1

Install Python 1

Set up a Project 1

Configuring the UI 1

Navigating Code 2

Editing Code 3

Debugging Code 4

Other Features 4

Related Documents 5

How-Tos for Web Development 5

2.1. Using Wing IDE with Django 5

Installing Django 6

Quick Start with Wing IDE Professional 6

Existing Django Project 6

New Django Project 7

Django-specific Actions 8

Usage Tips 8

Debugging Exceptions 8

Debugging Django Templates 9

Notes on Auto-Completion 9

Running Unit Tests 9

Django with Buildout 10

Manual Configuration 10

Configuring the Project 10

Configuring the Debugger 10

Launching from Wing 10

Launching Outside of Wing 11

Debugging Django Templates 11

Related Documents 12

2.2. Using Wing IDE with web2py 12

Introduction 12

Setting up a Project 12

Debugging 13

Setting Run Arguments 13

Hung Cron Processes 14

Better Static Auto-completion 14

Exception Reporting in Old Web2Py Versions 14

Related Documents 15

2.3. Using Wing IDE with Flask 15

Debugging in Wing IDE 15

Related Documents 16

2.4. Using Wing IDE with Pyramid 16

Installing Pyramid 16

Configuring your Wing IDE Project 17

Debugging 18

Notes on Auto-Completion 19

Debugging Mako Templates 19

Debugging without wingdbstub.py (experimental) 20

Related Documents 21

2.5. Using Wing IDE with Plone 21

Introduction 22

Configuring your Project 22

Debugging with WingDBG 22

WingDBG in buildout-based Plone installations 23

WingDBG as an Egg 23

Debugging Plone from the IDE 23

Related Documents 24

2.6. Using Wing IDE with Zope 24

Before Getting Started 25

Upgrading from earlier Wing versions 25

Quick Start on a Single Host 25

Starting the Debugger 26

Test Drive Wing IDE 26

Setting Up Auto-Refresh 27

Alternative Approach to Reloading 28

Setting up Remote Debugging 28

Trouble Shooting Guide 29

Related Documents 30

2.7. Using Wing IDE with Turbogears 30

Installing Turbogears 31

Configuring Turbogears 1.x to use Wing 31

Configuring Turbogears 2.x to use Wing 32

Notes for Turbogears 1.x 33

Notes for Turbogears 2.x 33

Related Documents 34

2.8. Using Wing IDE with Google App Engine 34

Creating a Project 34

Configuring the Debugger 35

Using the Debugger 36

Improving Auto-Completion and Goto-Definition 36

Trouble-shooting 37

Related Documents 37

2.9. Using Wing IDE with mod_wsgi 38

Debugging Setup 38

Disabling stdin/stdout Restrictions 38

Related Documents 39

2.10. Using Wing IDE with mod_python 39

Introduction 39

Quick Start 39

Example 40

Notes 40

Related Documents 41

2.11. Using Wing IDE with Paste and Pylons 41

Installing Paste and/or Pylons 41

Debugging in Wing IDE 41

Debugging Mako Templates 42

Related Documents 42

2.12. Using Wing IDE with Webware 42

Introduction 43

Setting up a Project 43

Starting Debug 44

Related Documents 44

2.13. Debugging Web CGIs with Wing IDE 45

Introduction 45

Tips and Tricks 45

How-Tos for GUI Development 47

3.1. Using Wing IDE with wxPython 47

Introduction 47

Installation and Configuration 47

Test Driving the Debugger 48

Test Driving the Source Browser 49

Using a GUI Builder 50

Related Documents 51

3.2. Using Wing IDE with PyQt 51

Introduction 51

Installation and Configuration 51

Test Driving the Debugger 52

Test Driving the Source Browser 53

Using a GUI Builder 53

Related Documents 54

3.3. Using Wing IDE with GTK and PyGObject 54

Auto-Completion 54

Related Documents 55

3.4. Using Wing IDE with PyGTK 55

Introduction 55

Installation and Configuration 56

Auto-completion and Source Assistant 56

Using a GUI Builder 57

Details and Notes 57

Related Documents 57

3.5. Using Wing IDE with matplotlib 58

Working in the Python Shell 58

Working in the Debugger 59

Trouble-shooting 59

Related Documents 59

How-Tos for Modeling, Rendering, and Compositing Systems 60

4.1. Using Wing IDE with Blender 60

Introduction 60

Related Documents 61

4.2. Using Wing IDE with Autodesk Maya 61

Debugging Setup 61

Better Static Auto-completion 62

Additional Information 62

Related Documents 63

4.3. Using Wing IDE with NUKE and NUKEX 63

Project Configuration 63

Configuring for Licensed NUKE/NUKEX 63

Configuring for Personal Learning Edition of NUKE 64

Additional Project Configuration 64

Replacing the NUKE Script Editor with Wing IDE Pro 64

Debugging Python Running Under NUKE 65

Debugger Configuration Detail 66

Limitations and Notes 67

Related Documents 67

4.4. Using Wing IDE with Source Filmmaker 67

Debugging Setup 68

Related Documents 68

How-Tos for Other Libraries 69

5.1. Using Wing IDE with virtualenv 69

Project Configuration 69

Related Documents 69

5.2. Using Wing IDE with Raspberry Pi 69

Introduction 70

Installing and Configuring the Debugger 70

Invoking the Debugger 72

Configuration Details 73

Trouble-Shooting 73

Setting up Wifi on a Raspberry Pi 74

Related Documents 74

5.3. Using Wing IDE with Twisted 75

Installing Twisted 75

Debugging in Wing IDE 75

Related Documents 76

5.4. Using Wing IDE with Cygwin 76

Configuration 76

Related Documents 77

5.5. Using Wing IDE with pygame 77

Debugging pygame 77

Related Documents 77

5.6. Using Wing IDE with scons 78

Debugging scons 78

Related Documents 79

5.7. Using Wing IDE with IDA Python 79

Debugging IDA Python in Wing IDE 79

Related Documents 80

Using Wing IDE with IronPython 80

Project Configuration 80

Related Documents 80

6.1. Handling Large Values and Strings in the Debugger 80

6.2. Debugging C/C++ and Python together 81

6.3. Debugging Extension Modules on Linux/Unix 81

Preparing Python 81

Starting Debug 82

Tips and Tricks 82

6.4. Debugging Code with XGrab* Calls 83

6.5. Debugging Non-Python Mainloops 84

6.6. Debugging Code Running Under Py2exe 86

Wing IDE Quick Start Guide
This is a minimalist guide for getting started quickly with Wing IDE. For a more
in-depth introduction, try the Tutorial.

Install Python
If you don't already have it on your system, install Python. You may need to restart
Wing after doing so.

Set up a Project
After Wing is running, create a new project from the Project menu. Then configure
your project with the following steps:

1. Use Add Existing Directory in the Project menu to your sources to the project.
It's best to constrain this to the directories you are actively working with and let
Wing find the libraries you use through the PYTHONPATH.

2. Use Project Properties in the Project menu to set Python Executable to the
python.exe or other interpreter executable you want to use with your project. This
is typically the full path that is in sys.executable in the desired Python
installation.

3. If your code alters sys.path or loads modules in a non-standard way then you
may need to set Python Path so that Wing can find your modules for
auto-completion, refactoring, debugging, testing, other features.

4. You may want to right-click on your main entry point in the Project tool and select
Set As Main Debug File so that debugging always starts there.

5. Use Save Project As in the Project menu to save your project to disk.

Note: Wing may consume significant CPU time when it first analyzes your code base.
Progress is indicated in the lower left of the IDE window. Once this is done, the results
are cached across sessions and Wing should run with a snappy and responsive
interface.

See Project-Wide Properties and Per-File Properties for a description of all available
properties. See Source Code Analysis for background on how Wing's source analysis
system works.

Configuring the UI
You are now ready to start working with code, but may want to make a few
configuration changes first:

Wing IDE Quick Start Guide

1

http://wingware.com/doc/intro/tutorial
http://python.org/download
http://wingware.com/doc/proj/project-wide-properties
http://wingware.com/doc/proj/per-file-properties
http://wingware.com/doc/edit/source-code-analysis

Key Bindings - Wing can emulate VI/Vim, Visual Studio, Emacs, Eclipse, and Brief
editors, selected with the User Interface > Keyboard > Personality preference.

Tab Key - The default tab key action depends on file type, context, and whether or not
there is a selection. This can be changed from the User
Interface > Keyboard > Tab Key Action preference.

There are many other options in Preferences.

Navigating Code
Wing provides many ways to get around your code quickly:

Goto-definition is available from the toolbar, Source menu, and by right-clicking on
symbols in the editor or shells. Use the browser-like forward/back history buttons at
the top left of the editor to return from visiting a point of definition.

Source Index menus at the top of the editor provide quick access to other parts of a
source file.

Find Symbol in the Source menu jumps to a symbol defined in the current file by
typing a fragment of its name. Find Symbol in Project works the same way but
searches all files in the project.

Open From Project in the File menu is a similar interface for quickly opening project
files.

Find Points of Use when you right-click on a symbol shows where that symbol is
being used. Wing distinguishes between separate but like-named symbols.

Source Browser provides module or class oriented display of the structure of your
code. Show both the Source Browser and Source Assistant for detailed information
about selected symbols.

Mini-search is a powerful keyboard-driven search and replace facility. The key
bindings listed in the Mini-search area of the Edit menu will display the search entry
area at the bottom of the screen.

Search in the Tools menu provides incremental text, wildcard, and regular expression
search and replace in selections and the current file.

Search in Files in the Tools menu provides wildcard and regular expression search
and replace in filtered sets of files, directories, named file sets, and within the project.

Toolbar search is another quick way to search the current file.

Wing IDE Quick Start Guide

2

Editing Code
Wing's editor focuses on fast error-free Python coding:

Auto-completion in Wing's editor speeds up typing and reduces coding errors. The
auto-completer uses Tab by default for completion, but this can be changed in the
Editor > Auto-Completion > Completion Keys preference.

Call Tips and Documentation shown in the Source Assistant update as you move
through your code or work in the shells.

Auto-indent while typing matches the file's existing indentation. When multiple lines
are pasted, they are re-indented according to context (a single Undo reverts any
unwanted indentation change). Wing also provides an Indentation tool for converting
a file's indentation style.

Auto-Editing implements a range of operations such as auto-entering closing
parentheses, brackets, braces, and quotes. Among other things, Wing also
auto-enters invocation arguments, manages new blocks with the : key, and corrects
out-of-order typing.

Auto-editing operations can be enabled and disabled in the Editor > Auto-Editing
preferences group. The default set includes those operations that don't affect finger
memory. The others are well worth learning.

For details, see Auto-Editing.

Refactoring in Wing supports automated renaming and moving of symbols, extracting
functions or methods, and introducing variables more quickly than by manually editing
code.

Snippets are included in Wing's auto-completer as a quick way to enter commonly
repeated coding motifs for coding standards, documentation, testing, and so forth.
Data entry for snippet arguments is inline in the editor. Use the Tab key to move
between the fields. Edit or add snippets in the Snippets tool.

Turbo Completion is an optional auto-completion mode made possible by Wing's
powerful source analysis engine. When the Editor > Auto-Editing >
Python Turbo Mode preference is enabled, Wing turns every non-symbol key into a
completion key in contexts where a new symbol name is not being typed. The modifier
keys can be used alone to escape from the completer in the rare cases when Wing
fails to provide the desired completion.

Code Selection from the Edit > Select menu makes selecting whole statements,
blocks, or scopes a snap, before copying, editing, or searching through them.

Wing IDE Quick Start Guide

3

http://wingware.com/doc/edit/auto-editing

Debugging Code
Wing's debugger is a powerful tool for finding and fixing bugs, understanding
unfamiliar code, and writing new code interactively.

Breakpoints can be set by clicking on the breakpoint margin of the editor and
debugging is started from the toolbar or Debug menu. The Stack Data tool is used to
inspect or change program data. Debug process I/O is shown in the Debug I/O tool,
or optionally in an external console.

Interactive Debugging is supported by the Debug Probe, which provides an
interactive Python prompt that executes code in the current debug stack frame. When
the debugger is paused Wing alos uses the live runtime state to fuel the
auto-completer in the editor, Source Assistant, goto-definition, and other tools.

Conditional Breakpoints can be used to isolate and understand complex bugs by
stopping before they occur. Using a conditional breakpoint to isolate a broken case
and the Debug Probe to design a fix is far more accurate and productive than
relaunching code repeatedly.

Move Program Counter is also supported in the innermost stack frame by right
clicking in the editor and selecting Move Program Counter Here.

Watching Values by right-clicking on the editor or any of the data views tracks values
over time by symbolic name or object reference in the Watch tool. Expressions can be
also be watched.

Launch Configurations in the Project menu can be used with Named Entry Points
in the Debug menu define different runtime environments for debugging, executing,
and unit testing your code.

Other Features
Wing contains many other features, including:

Python Shell -- Wing's Python Shell lets you try out code in a sandbox process kept
isolated from Wing IDE and your debug process. The shell provides auto-completion,
goto-definition, and is integrated with the Source Assistant.

Unit Testing in Wing's Testing tool works with unittest, doctest, pytest, nose, and
Django unit tests. You can run tests suites, view the results, and debug tests.

Version Control in Wing supports Mercurial, Git, Subversion, Perforce, Bazaar, and
CVS version control systems. Wing should auto-detect which systems are used in
your project and show the appropriate additional menubar menus and tools in the
Tools menu. Right-click on the editor, Project tool, or items in the version control tool

Wing IDE Quick Start Guide

4

to compare that file or directory to the repository with Compare to Repository. Wing
will display both versions with differences highlighted and the added toolbar tools can
be used to move through and merge differences. This capability is also available for
comparing two files or directories, and a modified buffer to its disk file, by clicking on
the Difference/Merge icon in the toolbar.

Running Command Lines in Wing's OS Commands tool makes it possible to set up
and easily execute external tools. This can also be used to set up a build command
that will be executed automatically before each debug sessions.

User Interface Customization in Preferences gives you control of the overall layout
and color of the IDE, among many other options. Right click on the tabs for layout
options, or drag tool and editor tabs to move them or create new splits. Right click on
the toolbar to configure which tools are visible or to add your own. Wing also supports
defining sharable color palettes and syntax colors.

Perspectives in Wing Pro let you save named tool panel configurations.

Many Other Features such as bookmarks, line editing, code folding, macros are also
available. You can also extend Wing IDE by writing Python scripts.

Note

We welcome feedback, which can be submitted with Submit Feedback in
Wing's Help menu, or by emailing at support@wingware.com

Related Documents
For more information see:

• Wing IDE Tutorial, a detailed guided tour for Wing IDE.
• How-Tos for Django, matplotlib, PyQt, wxPython, Plone, Autodesk Maya,

NUKE/NUKEX, PyGame, and many others
• Wing IDE Reference Manual, which describes Wing IDE in detail.

How-Tos for Web Development
The following How-Tos provide tips and short cuts for using a number of popular web
development frameworks with Wing IDE.

2.1. Using Wing IDE with Django

How-Tos for Web Development

5

http://wingware.com/doc/custom/qt-styles
http://wingware.com/doc/custom/syntax
http://wingware.com/doc/scripting/index
mailto:support@wingware.com
http://wingware.com/doc/intro/tutorial
http://wingware.com/doc/howtos/django
http://wingware.com/doc/howtos/matplotlib
http://wingware.com/doc/howtos/pyqt
http://wingware.com/doc/howtos/wxpython
http://wingware.com/doc/howtos/plone
http://wingware.com/doc/howtos/maya
http://wingware.com/doc/howtos/nuke
http://wingware.com/doc/howtos/pygame
http://wingware.com/doc/howtos/index
http://wingware.com/doc/manual

Note

"Wing is really the standard by which I judge other IDEs. It opens, it
works, and does everything it can do to stay out of my way so I can be
productive. And its remote debugging, which I use when I'm debugging
Django uWSGI processes, makes it a rock star!" -- Andrew M

Wing IDE is an integrated development environment that can be used to write, test,
and debug Python code that is written for Django, a powerful web development
framework. Wing provides auto-completion, call tips, goto-definition, find uses,
refactoring, a powerful debugger, unit testing, and many other features that help you
write, navigate, and understand Python code.

Wing IDE can also be used to step through and debug Django templates, and it
includes Django-specific plugin functionality to make it easier to create Django
projects and apps, set up Wing projects for use with Django, and manage routine
tasks. The debugger can be configured to launch Django from the IDE and to reinitiate
automatically when Django reload occurs.

For more information on Wing IDE see the product overview. If you do not already
have Wing IDE installed, download a free trial now. To get started using Wing, refer to
the tutorial in the Help menu in Wing and/or the Wing IDE Quickstart Guide.

Installing Django

The Django website provides complete instructions for installing Django.

Quick Start with Wing IDE Professional

If you have Wing IDE Professional and Django 1.4 or later, the fastest way to get
started using Wing IDE with Django is to use the provided Django extensions. If you
have Wing IDE Personal, skip ahead to the Manual Configuration section below.

Existing Django Project

To set up a Wing IDE Professional project for an existing Django project:

1. Create a new project from the Project menu,
2. Add the Django site directory to the Wing project (so that manage.py and

settings.py (or settings package) are both in the project),
3. Wait until the Django menu appears in the menu bar, and

How-Tos for Web Development

6

http://wingware.com/wingide/
http://www.djangoproject.com/
http://wingware.com/products
http://wingware.com/wingide/trial
http://wingware.com/doc/howtos/quickstart
http://www.djangoproject.com/

4. Select the Configure Project for Django item from that menu.

This sets the Python Executable in Project Properties (if it can be located), sets up
manage.py runserver 8000 as the main debug file, turns on child process debugging
in Project Properties (for debugging auto-reloaded code), adds DJANGO_SITENAME
and DJANGO_SETTINGS_MODULE to the environment in Project Properties, adds
the site directory to the Python Path in the Wing project, ensures
Django Template Debugging in Project Properties is enabled, turns on
TEMPLATE_DEBUG in your site's settings.py file (debugging templates will not work
without this), and sets the Default Test Framework in the Testing tab of Project
Properties so that Wing's Testing tool will invoke manage.py test.

If settings is a package in your project (instead of a settings.py file), you will need to
set TEMPLATE_DEBUG=True manually in the appropriate place(s) in your settings.

Now you should be able to start Django in Wing IDE's debugger, set breakpoints in
Python code and Django templates, and reach those breakpoints in response to a
browser page load.

New Django Project

If you are starting a new Django project at the same time as you are setting up your
Wing IDE project:

1. Select Start Django Project from the Extensions sub-menu of the Project
menu.

2. You will be prompted for the location of django_admin.py, location to place the
new project, and the site name in the same entry area. Defaults for these values
are based on the current project contents, if a Django project is already open.

3. Press Enter and Wing will set up a new Django project and your Wing IDE project
at the same time.

This runs django_admin.py startproject <sitename>, sets up settings.py to use
sqlite3 default database engine, adds django.contrib.admin to INSTALLED_APPS,
runs syncdb, and copies the default admin template base_site.html from your
Django installation into your site's templates/admin directory.

Note that on Windows you will see an error that the superuser account could not be
set up. The error includes the command that needs to be run interactively. To
complete project creation, copy/paste this into a command console.

When project setup is completed, the command offers to create a new Wing IDE
project, add the files, and configure the project for use with Django as described in the
Existing Django Project sub-section above.

How-Tos for Web Development

7

Django-specific Actions

The Django menu that auto-activates for Django projects also contains special
actions for running sync db, generating SQL for a selected app, running validation
checks, running unit tests, and restarting the integrated Python Shell with the Django
environment.

This menu also allows starting a new Django app. This action creates the app and
adds it to INSTALLED_APPS in settings.py. If settings is a package, you will need to
manually add the new Django app to INSTALLED_APPS in the appropriate place(s)
in your settings.

This functionality is implemented as an open source plugin that can be found in
scripts/django.py in the install directory listed in Wing's About box. This code can be
user-modified by working from the existing functionality as examples. For detailed
information on writing extensions for Wing IDE, see the Scripting and Extending Wing
IDE chapter.

Usage Tips

Debugging Exceptions

Django contains a catch-all handler that displays exception information to the browser.
When debugging with Wing, it is useful to also propagate these exceptions to the IDE.
This can be done with a monkey patch as follows (for example, in local_settings.py
on your development systems):

import os
import sys

import django.views.debug

def wing_debug_hook(*args, **kwargs):
 if __debug__ and 'WINGDB_ACTIVE' in os.environ:
 exc_type, exc_value, traceback = sys.exc_info()
 sys.excepthook(exc_type, exc_value, traceback)
 return old_technical_500_response(*args, **kwargs)

old_technical_500_response = django.views.debug.technical_500_response
django.views.debug.technical_500_response = wing_debug_hook

The monkey patch only activates if Wing's debugger is active and assumes that the
Report Exceptions preference is set to When Printed.

How-Tos for Web Development

8

http://wingware.com/doc/scripting/index
http://wingware.com/doc/scripting/index

Debugging Django Templates

The above-described project setup scripts enable template debugging automatically.
You should be able to set breakpoints in any file that contains {%%} or {{}} tags, and
the debugger will stop at them.

When debugging Django templates is enabled, Wing will replace the Python stack
frames within the template invocation with frames for the template files, and the locals
shown in the Stack Data tool will be extracted from the template's runtime context.
When working in a template stack frame, the Debug Probe, Watch, and other tools will
operate in the environment that is displayed in the Stack Data tool.

Note that stepping is tag by tag and not line by line, but breakpoints are limited to
being set for a particular line and thus match all tags on that line.

Stepping in the debugger while a template invocation is active will be limited to
templates and any user code or code within the contrib area of your Django
installation. If you need to step into Django internals during a template invocation, you
will need to disable Django template debugging in your project properties, set a
breakpoint at the relevant place in Django, and restart your debug process.

Notes on Auto-Completion

Wing provides auto-completion on Python code and Django templates. The
completion information is based on static analysis of the files unless the debugger is
active and paused and the template or Python code being edited are on the stack. In
that case, Wing sources the information shown in the auto-completer and Source
Assistant from live runtime state. As a result, it is often more informative to work with
the debugger paused or at a breakpoint, particularly in Django templates where static
analysis is not as effective as it is in Python code.

Running Unit Tests

In Wing IDE Professional, the Default Testing Framework under the Testing tab of
Project Properties can be set to Django Tests to cause the Testing tool in Wing to
run manage.py test and display the results. Particular tests can be debugged by
selecting them and using Debug in the Testing menu (or right-clicking on them).

If unit tests need to be run with different settings, the environment variable
WING_TEST_DJANGO_SETTINGS_MODULE can be set to replace
DJANGO_SETTINGS_MODULE when unit tests are run.

How-Tos for Web Development

9

Django with Buildout

When using Django with buildout, Wing won't auto-detect your project as a Django
project because the manage.py file is instead named bin/django. To get it working,
copy bin/django to manage.py in the same directory as settings.py or the settings
package.

Manual Configuration

This section describes manual configuration of Wing IDE projects for use with Django.
If you are using Wing IDE Professional, first see the above Quick Start for Wing IDE
Professional.

Configuring the Project

To get started, create a new project from the Project menu, add your files, and
determine if the correct Python is being found by displaying the Python Shell tool in
Wing. If the wrong Python is being used, alter the Python Executable in Project
Properties (in the Project menu) and restart the shell from its Options menu.

You may also want to set the DJANGO_SITENAME and
DJANGO_SETTINGS_MODULE environment variables in Project Properties.

Configuring the Debugger

There are two ways to debug Django code: Either configure Django so it can be
launched by Wing's debugger (the recommended method), or cause Django to attach
to Wing from the outside as code that you wish to debug is executed.

Launching from Wing

When Django is launched from Wing, you must enable Debug Child Processes
under the Debug/Execute tab of Project Properties so that Wing can debug
auto-reloaded processes. This way Django can immediately load changes you make
to code without requiring a restart of Django.

Next find manage.py in your project, right click to select File Properties..., and set
the Run Arguments to your desired launch arguments. For example:

runserver 8000

Child process debugging is not available in Wing IDE Personal, where instead you will
need to add --noreload to the run arguments for manage.py, like this:

runserver --noreload 8000

How-Tos for Web Development

10

Other options can be added here as necessary for your application.

Some older versions of Django may also require adding --settings=devsettings to
the arguments for runserver, in order for debugging to work. If Wing is not be able to
stop on any breakpoints, try adding this.

Launching Outside of Wing

Another method of debugging Django is to use wingdbstub.py to initiate debugging
when Django is started from outside of Wing IDE. This method can be used to debug
a Django instance remotely or to enable debugging reloaded Django processes with
Wing IDE Personal.

This is done by placing a copy of wingdbstub.py, which is located in the install
directory listed in Wing's About box, into the top of the Django directory, where
manage.py is located. Make sure that WINGHOME is set inside wingdbstub.py; if
not, set it to the location of your Wing IDE installation (on OS X, to the name of Wing's
.app folder). This allows the debug process to find the debugger implementation.

Next, place the following code into files you wish to debug:

import wingdbstub

Then make sure that the Accept Debug Connections preference is enabled in Wing
and start Django. The Django process should connect to Wing IDE and stop at any
breakpoints set after the import wingdbstub.

When code is changed, just save it and Django will restart. The debugger will
reconnect to Wing IDE once you request a page load in your browser that leads to
one of your import wingdbstub statements.

To debug remotely, refer to Remote Debugging in the Wing IDE reference manual.

Debugging Django Templates

To enable debugging of Django templates, you will need to take the following two
steps:

1. Set TEMPLATE_DEBUG to True in your Django application's settings.py file or
settings package,

2. Be sure that Wing IDE's Enable Django Template Debugging setting in your
project's properties is enabled. When you change this property, you will need to
restart your Django debug process if one is already running.

How-Tos for Web Development

11

http://wingware.com/doc/debug/remote-debugging

Related Documents

Wing IDE provides many other options and tools. For more information:

• Wing IDE Reference Manual, which describes Wing IDE in detail.
• Django home page, which provides links to documentation.
• Wing IDE Quickstart Guide which contains additional basic information about

getting started with Wing IDE.

2.2. Using Wing IDE with web2py
Wing IDE is an integrated development environment that can be used to write, test,
and debug Python code and HTML templates that are written for web2py, an open
source web development framework. Wing provides auto-completion, call tips, a
powerful debugger, and many other features that help you write, navigate, and
understand Python code.

For more information on Wing IDE see the product overview. If you do not already
have Wing IDE installed, download a free trial now.

To get started using Wing, refer to the Tutorial in the Help menu in Wing and/or the
Wing IDE Quickstart Guide.

Introduction

Wing IDE allows you to debug Python code and templates running under web2py as
you interact with it from your web browser. Breakpoints set in your code from the IDE
will be reached, allowing inspection of your running code's local and global variables
with Wing's various debugging tools. In addition, in Wing IDE Pro, the Debug Probe
tab allows you to interactively execute methods on objects and get values of variables
that are available in the context of the running web app.

There is more than one way to do this, but in this document we focus on an "in
process" method where the web2py server is run from within Wing, as opposed to
attaching to a remote process.

Setting up a Project

Download and install web2py. On some OSes you can use the regular install, but at
least on Windows you need to use the web2py sources instead because the regular
install is missing modules necessary for debugging. When the sources are being
used, you will also need to install Python if you don't already have it.

Then launch Wing and create a new project from the Project menu. Select web2py
as your project type, and point the Python Executable at the Python executable

How-Tos for Web Development

12

http://wingware.com/doc/manual
http://www.djangoproject.com/
http://wingware.com/doc/howtos/quickstart
http://wingware.com/wingide
http://www.web2py.com/
http://wingware.com/products
http://wingware.com/wingide/trial
http://wingware.com/doc/intro/tutorial
http://wingware.com/doc/howtos/quickstart
http://wingware.com/doc/debug/debugging-externally-launched-code

(python or python.exe) used for web2py. Click OK and then save the project (for
example, as web2py.wpr within the web2py directory).

Next add the web2py directory to your project by going to the Project view, right
clicking, and selecting Add Directory. After the project view populates, find and right
click on the file web2py.py and select Set As Main Debug File.

On Windows, if you are working from sources, you may also need to install pywin32

Debugging

You can now debug web2py by clicking on the green Debug icon in Wing's toolbar
and waiting for the web2py console to appear. Enter a password and start the server
as usual.

Once web2py is running, open a file in Wing that you know will be reached when you
load a page of your web2py application in your web browser. Place a breakpoint in the
code and load the page in your web browser. Wing should stop at the breakpoint. Use
the Stack Data tool or Debug Probe (in Wing Pro) to look around.

An example is to set a breakpoint in
applications/welcome/views/default/index.html, which is loaded when you go to
the URL http://127.0.0.1:8000/welcome/default/index (assuming local web2py install
running on port 8000).

Notice that breakpoints work both in Python code and HTML template files.

Wing's Debug Probe (in the Tools menu) is similar to running a shell from web2py
(with python web2py.py -S myApp -M) but additionally includes your entire context
and provides auto-completion. You can easily inspect or modify variables, manually
make function calls, and continue debugging from your current context.

Setting Run Arguments

When you start debugging, Wing will show the File Properties for web2py.py. This
includes a Run Arguments field under the Debug tab where you can add any
web2py option. For example, adding -a '<recycle>' will give you somewhat faster
web2py startup since it avoids showing the Tk dialogs and automatically opening a
browser window. This is handy once you already have a target page in your browser.
Run python web2py.py --help for a list of all the available options.

To avoid seeing the File Properties dialog each time you debug, un-check the "Show
this dialog before each run" check box. You can access it subsequently with the
Current File Properties item in the Source menu or by right clicking on the editor
and selecting Properties.

How-Tos for Web Development

13

http://sourceforge.net/projects/pywin32/

Hung Cron Processes

Web2py may spawn cron sub-processes that fail to terminate on some OSes when
web2py is debugged from Wing IDE. This can lead to unresponsiveness of the debug
process until those sub-processes are killed. To avoid this, add the parameter -N to
prevent the cron processes from being spawned.

Better Static Auto-completion

Working in your code when the debugger is not runnng by default misses some
auto-completion options because of how web2py works. For example,
auto-completion after typing db. will fail because db is not explicitly defined. To fix
this, you can add some hints for Wing as follows at the top of the file:

XXX This makes auto-completion work; also need to alter Python Path
XXX in project properties.
if 0:
 import db

Then go into Project properties in the Project menu and add the following path
under Python Path:

/path/to/web2py/applications/examples/models

Replace /path/to according to where you unpacked web2py. This path may vary
depending on which app you are working with.

Now, typing db. should bring up an auto-completer with the contents of db even if the
debugger is not running.

Exception Reporting in Old Web2Py Versions

This section is only relevant if you are using a very old web2py, before version 1.62 .

As shipped, web2py version 1.61 and earlier contain a catch-all exception handler to
report unexpected errors in your web browser as tickets. This is useful when tracking
problems on a live site.

To make debugging more convenient, change the except Exception, exception
clause in the definition of restricted at the end of the file src/gluon/restricted.py in
your web2py installation to read as follows:

except Exception, exception:
 # XXX Show exception in Wing IDE if running in debugger
 if __debug__ and 'WINGDB_ACTIVE' in os.environ:
 etype, evalue, tb = sys.exc_info()

How-Tos for Web Development

14

 sys.excepthook(etype, evalue, tb)
 raise RestrictedError(layer, code, '', environment)

Now you will get exceptions reported in Wing's Exceptions tool and can conveniently
move up or down the stack and inspect the program state at the time of the exception.

Related Documents

Wing IDE provides many other options and tools. For more information:

• Wing IDE Reference Manual, which describes Wing IDE in detail.
• Wing IDE Quickstart Guide which contains additional basic information about

getting started with Wing IDE.

2.3. Using Wing IDE with Flask
Wing IDE is an integrated development environment that can be used to write, test,
and debug Python code that is written for Flask. Wing provides auto-completion, call
tips, a powerful debugger, and many other features that help you write, navigate, and
understand Python code.

For more information on Wing IDE see the product overview. If you do not already
have Wing IDE installed, download a free trial now. To get started using Wing, refer to
the tutorial in the Help menu in Wing and/or the Wing IDE Quickstart Guide.

Debugging in Wing IDE

To debug Flask in Wing you need to turn off Flask's built-in debugger, so that Wing's
debugger can take over in reporting exceptions.

To do this, you can set up your main entry point as in the following example:

from flask import Flask
app = Flask(__name__)

...

if __name__ == "__main__":
 from os import environ
 if 'WINGDB_ACTIVE' in environ:
 app.debug = False
 app.run(use_reloader=True)

Notice that this turns off Flask's debugging support only if Wing IDE's debugger is
present.

How-Tos for Web Development

15

http://wingware.com/doc/manual
http://wingware.com/doc/howtos/quickstart
http://wingware.com/wingide/
http://flask.pocoo.org/
http://wingware.com/products
http://wingware.com/wingide/trial
http://wingware.com/doc/howtos/quickstart

The use_reloader argument is optional, but speeds up debugging considerably
because Flask won't need a restart to load code changes. If this option is set to True
you will need to enable Debug Child Processes under the Debug/Execute tab in
Project Properties from the Project menu. Otherwise the reloaded process will not
be debugged.

Once this is done, use Set Main Debug File in the Debug menu to set this file as
your main debug file in Wing IDE. Then you can start debugging from the IDE, and
load pages from a browser to reach breakpoints or exceptions.

If you did not set the use_reloader argument to app.run() to True then you will need
to use Restart Debugging in the Debug menu or the restart icon in the toolbar to
load changed code into Flask.

Passing the --no-debug flag or setting environment variable FLASK_DEBUG=0 are
other documented ways to turn of Flask's debug support, although we've had reports
of --no-debug failing to function as expected.

Related Documents

Wing IDE provides many other options and tools. For more information:

• Wing IDE Reference Manual, which describes Wing IDE in detail.
• Flask home page, which provides links to documentation.
• Wing IDE Quickstart Guide which contains additional basic information about

getting started with Wing IDE.

2.4. Using Wing IDE with Pyramid
Wing IDE is an integrated development environment that can be used to write, test,
and debug Python code that is written for Pyramid, a powerful web development
system. Wing provides auto-completion, call tips, a powerful debugger, and many
other features that help you write, navigate, and understand Python code.

For more information on Wing IDE see the product overview. If you do not already
have Wing IDE installed, download a free trial now. To get started using Wing, refer to
the tutorial in the Help menu in Wing and/or the Wing IDE Quickstart Guide.

Installing Pyramid

Please see the Pyramid website (part of the Pylons project), which provides complete
instructions for installing the Pyramid framework. The procedure varies slightly by OS.

Like any Python package, Pyramid will install itself using whichever instance of Python
runs the installer script. You should be using a Python version at least 2.6.

How-Tos for Web Development

16

http://wingware.com/doc/manual
http://flask.pocoo.org/
http://wingware.com/doc/howtos/quickstart
http://wingware.com/wingide/
http://www.pylonsproject.org/projects/pyramid
http://wingware.com/products
http://wingware.com/wingide/trial
http://wingware.com/doc/howtos/quickstart
http://www.pylonsproject.org/projects/pyramid

Pyramid projects are typically installed inside of a virtualenv, to maintain a
"sandboxed" installation separate from your main Python installation. This allows
Python packages that you install as part of your Pyramid project to be kept entirely
separate from your system's main Python environment, and from any other virtualenvs
that you may have. Creating or removing a virtualenv is just a couple of file system
commands, so it's easy and quick to start a new one just to test an alternative
configuration of your project. This makes it very easy to test "what-if" scenarios based
on installing different versions of the packages relied upon by your project. For
example, you could use a new virtualenv if you wanted to try serving your app using a
newly released version of your ORM layer or your templating engine, or a newly
released or beta version of Pyramid itself.

This How-To was developed with Pyramid version 1.3.

Configuring your Wing IDE Project

This section assumes your Pyramid project is called 'project' and is installed in a
virtualenv at .../project where ... is the full path to the location of your project. We also
assume that you are running Wing IDE, that you have your current Wing Project open
and saved as .../project/project.wpr (or whatever you chose to name your project).

Make sure that your Pyramid project directory (which should be the same as your
virtualenv) is added to your Wing project with Add Directory in the Project menu, and
that you have saved the project. There is no need to add the entire .../project
directory to the Wing project, as that would include the entire project/bin area. Typical
Pyramid project structure looks like project/Project/project. The Project (upper case)
directory holds setup and README information for your project and the configuration
files, ending in .ini, which allow you to start your project's server with different
settings.

Ordinarily you'll have project/Project/development.ini which contains the settings
(including enabling lots of logging, etc) that you run during development activities, and
project/Project/production.ini which contains different settings (turning off most
logging and any development-related security vulnerabilities such as open
administrative access) that you'll use in production. But you can also create additional
.ini files for any purpose, such as when you want to simulate serving your project
under different conditions, e.g. connecting to a different database server.

The one file you'll need to add to your Wing project from the .../project level of your
directory structure is .../project/bin/pserve. Then open it in Wing and set it as Main
Debug File from the Debug menu.

Next open up the Python Shell tool and type import sys followed by sys.executable
to check whether Wing is using the Python that will be running the Pyramid server. If

How-Tos for Web Development

17

not, verify that the shell's status message does not indicate that it needs to be
restarted to load configuration changes. If this message is present, restart the shell
from its Options menu and try again. If the message is not present, open
Project Properties and set the Python Executable, then restart the shell again and
verify that sys.executable is correct. The interpreter used in this step will vary
depending on whether your .../project directory is enabled as a virtualenv or not.

Once this is done, Wing's source analysis engine should be able to find and analyze
your code and Pyramid. Analysis status messages may show up in the lower left of
Wing's main window while analysis is in progress.

Debugging

To debug code running under Pyramid, place a copy wingdbstub.py (from the install
directory listed in Wing's About box) into your project/Project directory, the same
directory that holds your .ini files and which is set as the Initial Directory for your
Wing project. Near the top of any Python file you wish to debug, place the following
line:

import wingdbstub

Also click on the bug icon in the lower left of the main window and make sure that
Accept Debug Connections is checked.

Then set a breakpoint on any location in your project's code that you know will be
reached when an HTTP or AJAX request is made to your server, depending on what
user actions in the browser you intend to follow with debugging. A common breakpoint
location would be in one of what Pyramid calls your View Callables, which are the
Python classes and/or methods called by the webserver depending on the URL and
other parameters of the request. Or, if you need to debug lower levels of the stack,
you can set breakpoints in the Pyramid source files themselves, or in the source of
any other package (such as your ORM or template rendering system) that supports
the handling of your web requests.

With a terminal window open, start your Pyramid server as you usually would, by
issuing the command:

pserve --reload development.ini

from within your project/Project directory. --reload is a convenient option that restarts
the server whenever you've saved any changes to your Pyramid project's source files.
You don't have to use it, but Wing's debugger is still able to attach and operate

How-Tos for Web Development

18

correctly if you do. If you are using a different .ini file such as a production.ini or
testing.ini, supply its name to pserve instead.

Load http://localhost:5000/ or the page you want to debug in a browser. The port
that your server uses (5000 in this example) is set in your .ini file, in a section that
looks like the following:

[server:main]
use = egg:waitress#main
host = 0.0.0.0
port = 5000

Wing should stop on your breakpoint. Be sure to look aroung a bit with the Stack Data
tool, and in Wing Pro the Debug Probe (a command line that works in the runtime
state of your current debug stack frame). All the debugging tools are available from
the Tools menu, if not already shown.

Notes on Auto-Completion

Wing provides auto-completion on Python code and within basic HTML elements, and
can help a lot within the various templating languages that can be used in a Pyramid
project.

The autocomplete information available to Wing is based on static analysis of your
project files and any files Wing can find on your Python Path or via imports in other
Python files.

Additionally, when the debugger is active and paused, Wing usess introspection of the
live runtime state for any template or Python code that is active on the stack. As a
result, it is often more informative to work on your source files while Wing's debugger
is active and paused at a breakpoint, exception, or anywhere in the source code
reached by stepping.

Debugging Mako Templates

A good choice of templating engine for the Pyramid projects of a Wing IDE user is
Mako, because it allows the full syntax of Python in expression substitutions and
control structures and this maximizes Wing's ability to help out. Mako templates are
simply marked-up HTML files, and as such they cannot be directly stepped through
using the debugger. However, they are compiled to .py files whenever the source file
is altered, and you can set Wing debug breakpoints in the .py files corresponding to
your templates.

How-Tos for Web Development

19

http://www.makotemplates.org

Debugging Mako templates with Wing IDE requires one optional setting that can be
made in your .ini file, usually development.ini. Under the [app:main] section, add
the following line:

mako.module_directory=%(here)s/data/templates

This location will exist in most typical Pyramid projects. If yours does not have it you
can create it, or point the setting to an existing location of choice. Without this setting
(by default), mako templates are compiled in memory and not cached to disk. With
this setting in place, your mako templates will be compiled to actual .py files in the
desired location, with the same filename as the original template plus the .py
extension appended to the end.

You should be able to set breakpoints within these .mako.py files just like anywhere
else in your project. If necessary, add the following at the top of the template file:

<%! import wingdbstub %>

This uses mako's module-level import facility to drop the import directly into the
compiled .mako.py file, and will prevent the import from disappearing when a
template is automatically recompiled after its source file is changed.

Your .mako.py files will not be in one-to-one line correspondence with their .mako
source files, but mako inserts tracking comments indicating original source line
numbering.

Debugging without wingdbstub.py (experimental)

In some cases it may be more convenient to debug your Pyramid project files by
launching your Pyramid server directly from Wing, rather than using wingdbstub.py
as described above. In this approach, you use the Debug Start or Restart commands
to start and restart your server, instead of launching it on the command line outside of
Wing.

To try this, verify that you have set the Main Debug File to .../project/bin/pserve by
opening the file, and selecting Set Current as Main Debug File from the Debug
menu.

Then right click on the pserve file in the editor or Project tool and use Properties... to
set its Run Arguments to development.ini or whatever .ini file you want to use with
debugging, and then set the Initial Directory property to .../project/Project or
wherever your .ini files are located.

How-Tos for Web Development

20

Make sure that the --reload option is not supplied in the Run Arguments that you
configure, as this will interfere with the debugger. You will need to press the restart
debugging icon in the toolbar or select Restart Debugging from the Debug menu to
restart the Pyramid server after making changes to Python files or templates.

Once this is done, press the green Debug icon in the toolbar or use Start/Continue in
the Debug menu to start debugging. The Debug I/O tool in Wing, available in the
Tools menu, will display any output from the server.

Related Documents

Wing IDE provides many other options and tools. For more information:

• Wing IDE Reference Manual, which describes Wing IDE in detail.
• Pyramid documentation
• Wing IDE Quickstart Guide which contains additional basic information about

getting started with Wing IDE.

Thanks to Eric Ongerth for providing the initial version of this How-To.

2.5. Using Wing IDE with Plone

Note

"The best solution for debugging Zope and Plone" -- Joel Burton, Member,
Plone Team

Wing IDE is an integrated development environment that can be used to write, test,
and debug Python code that is written for Plone, a powerful web content management
system. Wing provides auto-completion, call tips, debugger, and many other features
that help you write, navigate, and understand Python code.

For more information on Wing IDE see the product overview. If you do not already
have Wing IDE installed, download a free trial now.

To get started using Wing, refer to the tutorial in the Help menu in Wing and/or the
Wing IDE Quickstart Guide.

How-Tos for Web Development

21

http://wingware.com/doc/manual
http://docs.pylonsproject.org/en/latest/index.html
http://wingware.com/doc/howtos/quickstart
http://wingware.com/
http://www.plone.org/
http://wingware.com/products
http://wingware.com/wingide/trial
http://wingware.com/doc/howtos/quickstart

Introduction

The instructions below are for the Plone 4 unified installer. If you are using an older
version of Plone or use a source installation of Plone 4 that makes use of old style
Products name space merging, please refer instead to the instructions for Using Wing
IDE with Zope.

Note: We strongly discourage running Wing or development instances of Plone as
root or administrator. This creates unnecessary security risks and will cause debugger
configuration problems.

Configuring your Project

To set up your project, simply set the Main Debug File in Project Properties to the
file zinstance/bin/instance within your Plone installation. This may instead be
zeocluster/bin/client1 with a ZEO install, or whatever name is given in the .cfg file.
Wing will read the sys.path updates from that file so that it can find your Plone
modules.

You may also need to set Python Executable in Project Properties (accessed from
the Project menu) to the Python that is used in your Plone instance. For example, in a
standalone install this may be Python2.6/bin/python or similar. The full path can be
found by looking at the top of many of the scripts in zinstance/bin or zeocluster/bin.

For Plone 4, do not use the Zope2 support in Project Properties under the
Extensions tab. This is not needed unless your Plone installation still uses old style
Product name space merging.

Debugging with WingDBG

There are two ways to configure debugging. The method described in this sub-section
uses a Zope control panel to turn debugging on and off and will debug only requests
to a particular debug port. This is the most common way in which Plone is debugged
with Wing IDE.

To get debugging working install WingDBG, the Wing debugger product, from
zope/WingDBG-5.1.6.tar in your Wing installation by unpacking it into
zinstance/products (or zeocluster/products in a zeo install).

Then edit your etc/zope.conf to change enable-product-installation off at the end
to instead read enable-product-installation on. In a zeo install this file is located at
zeocluster/parts/client1/etc/zope.conf.

Finally, click on the bug icon in the lower left of the IDE window and turn on
Accept Debug Connections so the debugger listens for connections initiated from
the outside.

How-Tos for Web Development

22

http://wingware.com/doc/howtos/zope
http://wingware.com/doc/howtos/zope

Then start Plone and go into the Zope Management Interface from
http://localhost:8080/ , click on Control Panel, and then on Wing Debug Service at
the bottom. From here you can turn on debugging. The bug icon in lower left of Wing
IDE's window should turn green after a while and then any page loads via port 50080
(http://localhost:50080/) will be debugged and will reach breakpoints. This port and
other debugger options are configurable from the WingDBG control panel.

WingDBG in buildout-based Plone installations

In some new buildout-based Plone settings, WingDBG will not load until the
buildout.cfg (generated by the template plone4_buildout) is edited to add the
following just above [zopepy]:

products = ${buildout:directory}/products

Then rerun bin/buildout -N which will add a line like the following to your
parts/instance/etc/zope.conf file:

products /path/to/your/products''

You will also need to add the specified products directory manually, and then place
WingDBG in it.

WingDBG as an Egg

Encolpe Degoute has been maintaining a version of WingDBG that is packaged as an
egg.

Creating an egg yourself is also possible as follows:

paster create -t plone Products.WingDBG

Then copy WingDBG/* to Products.WingDBG/Products/WingDBG.

Debugging Plone from the IDE

It is also possible to debug Plone without WingDBG by launching Plone directly from
the IDE. This technique may be more convenient in some cases, and debugs all
requests to the Plone instance (not just those on a special debug port).

To debug this way, set zinstance/bin/instance (or zeocluster/bin/client1 in a zeo
install) in your Plone installation as the Main Debug File in Project Properties (this
should already be done from configuring your project earlier). Then right click on the

How-Tos for Web Development

23

http://localhost:8080/
http://localhost:50080/
http://plone.org/products/wingdbg/
http://plone.org/products/wingdbg/

file in the editor or Project view, select Properties, and set Run Arguments under the
Debug tab to common.

Note that this solution can take more time to launch than debugging with WingDBG
since the entire startup process is debugged.

Related Documents

Wing IDE provides many other options and tools. For more information:

• Using Wing IDE with Zope, which describes how to set up Zope for use with Wing
IDE.

• Wing IDE Reference Manual, which describes Wing IDE in detail.
• Plone home page, which provides links to documentation.
• Wing IDE Quickstart Guide which contains additional basic information about

getting started with Wing IDE.
• Plone Bootcamps offer comprehensive training on Plone using Wing IDE

throughout the course. Students learn how to set up and use Wing IDE with
Plone.

2.6. Using Wing IDE with Zope

Note

"The best solution for debugging Zope and Plone" -- Joel Burton, Member,
Plone Team

Wing IDE is an integrated development environment that can be used to develop, test,
and debug Python code running under Zope2 or Zope3. Wing provides
auto-completion, call tips, and other features that help you write, navigate, and
understand Zope code. Wing's debugger can be used to debug code in the context of
the running Zope server, in response to page loads from a browser, and can work with
Zope's code reloading features to achieve a very short edit/debug cycle.

Wing's code intelligence and debugging support work with Products, External
Methods, file system-based Scripts and Zope itself. Wing IDE is also useful for
Zope-based frameworks like Plone (see Plone Quickstart).

For more information on Wing IDE see the product overview. If you do not already
have Wing IDE installed, download a free trial now.

How-Tos for Web Development

24

http://wingware.com/doc/howtos/zope
http://wingware.com/doc/manual
http://www.plone.org/
http://wingware.com/doc/howtos/quickstart
http://plonebootcamps.com
http://wingware.com/wingide
http://www.plone.org/
http://wingware.com/doc/howtos/plone
http://wingware.com/products
http://wingware.com/wingide/trial

To get started using Wing, refer to the tutorial in the Help menu in Wing and/or the
Wing IDE Quickstart Guide.

Before Getting Started

Note: This guide is for Zope2 users. If you are using Zope3, please try z3wingdbg by
Martijn Pieters or refer to Debugging Externally Launched Code in the users manual
to set up Zope3 debugging manually.

Limitations: Wing IDE cannot debug DTML, Page Templates, ZCML, or Python code
that is not stored on the file system.

Security Warning: We advise against using the WingDBG product on production web
servers. Any user connected to the Wing IDE debugger will (unavoidably) have
extensive access to files and data on the system.

Upgrading from earlier Wing versions

If you are upgrading from an older version of Wing and have previously used Wing
with your Zope installation(s), you need to manually upgrade WingDBG in each Zope
instance. Otherwise, debugging may fail.

The easiest way to do this is to go to the Zope Control Panel, click on Wing
Debug Service, and then Remove the control panel. Then restart Zope. Next, go into
your Wing project's Extension Tab, verify that you've got the Zope Instance Home
set correctly, and press Apply. This will offer to re-install WingDBG with the latest
version and will configure it to point to the new version of Wing.

Quick Start on a Single Host

To use Wing IDE with Zope running on the same host as the IDE:

• Install Zope -- You can obtain Zope from zope.org. Version 2.5.1 or newer will
work with Wing.

• Install Wing IDE -- You will need Wing IDE 2.1 or later. See Installing for details.
• Configure Wing IDE -- Start Wing, create or open the project you wish to use

(from the Project menu). Then use the Extensions tab in Project Properties to
enable Zope2/Plone support and to specify the Zope2 Instance Home to use
with the project. Wing will find your Zope installation by reading the file
etc/zope.conf in the provided Zope instance. Once you press Apply or OK in
the Project Properties dialog, Wing will ask to install the WingDBG product and
will offer to add files from your Zope installation to the project. If your zope
instance is generated by buildout, set the main debug file to the bin/instance file
(bin\instance-script.py on Windows) in your buildout tree by opening the file in

How-Tos for Web Development

25

http://wingware.com/doc/howtos/quickstart
http://www.zopatista.com/projects/z3wingdbg
http://wingware.com/doc/debug/debugging-externally-launched-code
http://www.zope.org
http://wingware.com/downloads
http://wingware.com/doc/install/installing

Wing and select Set Current as Main Debug File in the Debug menu. This will
set up the effective sys.path for the instance.

• Configure the WingDBG Product -- Start or restart Zope and log into
http://localhost:8080/manage (assuming default Zope configuration). The Wing
Debugging Service will be created automatically on startup; you can find it under
the Control Panel of your server. If the Wing Debugging Service does not appear
in the Control Panel, you may need to enable product loading in your zope.conf
file by changing enable-product-installation off to
enable-product-installation on.

Starting the Debugger

Proceed to the Wing Debugger Service by navigating to the Control Panel, then
selecting the 'Wing Debugging Service'. Click in the "Start" button. The Wing IDE
status area should display "Debugger: Debug process running".

Note that you can configure WingDBG to start and connect to the IDE automatically
when Zope is started from the Advanced configuration tab.

Problems? See the Trouble-Shooting Guide below.

Test Drive Wing IDE

Once you've started the debugger successfully, here are some things to try:

Run to a Breakpoint -- Open up your Zope code in Wing IDE and set a breakpoint on
a line that will be reached as the result of a browser page load. Then load that page in
your web browser using the port number displayed by the Zope Management
Interface after you started the debugger. By default, this is 50080, so your URL would
look something like this:

http://localhost:50080/Rest/Of/Usual/Url

Explore the Debugger Tools -- Take a look at these tools available from the Tools
menu:

• Stack Data -- displays the stack, allows selecting current stack frame, and shows
the locals and globals for that frame.

• Debug Probe (Wing Pro only) -- lets you interact with your paused debug
process using a Python shell prompt

• Watch (Wing Pro only) -- watches values selected from other value views (by
right-clicking and selecting one of the Watch items) and allows entering
expressions to evaluate in the current stack frame

How-Tos for Web Development

26

http://localhost:8080/manage

• Modules (Wing Pro only) -- browses data for all modules in sys.modules
• Exceptions -- displays exceptions that occur in the debug process
• Debug I/O -- displays debug process output and processes keyboard input to the

debug process, if any

Continue the Page Load -- When done, select Start / Continue from the Debug
menu or toolbar.

Try Pause -- From Wing, you can pause the Zope process by pressing the pause icon
in the toolbar or using Pause from the Debug menu. This is a good way to interrupt a
lengthy computation to see what's going on. When done between page loads, it
pauses Zope in its network service code.

Other Features -- Notice that Wing IDE's editor contains a source index and presents
you with an auto-completer when you're editing source code. Control-click on a source
symbol to jump to its point of definition (or use Goto Selected Symbol in the Source
menu). Wing Pro also includes a Source Assistant and Source Browser. The Source
Assistant will display context appropriate call tips and documentation. Bring up the
Source Browser from the Tools menu to look at the module and class structure of
your code.

Setting Up Auto-Refresh

When you edit and save Zope External Methods or Scripts, your changes will
automatically be loaded into Zope with each new browser page load.

By default, Zope Products are not automatically reloaded, but it is possible to
configure them to do so. This can make debugging much faster and easier.

Take the following steps to take advantage of this feature:

• Place a file called refresh.txt in your Product's source directory (for example,
Products/MyProductName inside your Zope installation). This file tells Zope to
allow refresh for this product.

• Open the Zope Management Interface.
• Expand the Control Panel and Products tabs on the upper left.
• Click on your product.
• Select the Refresh tab.
• Check the "Auto refresh mode" check box and press "Change".
• Make an edit to your product source, and you should see the changes you made

take effect in the next browser page load.

Limitations: Zope may not refresh code if you use import statements within functions
or methods. Also, code that manages to retain references to old code objects after a

How-Tos for Web Development

27

refresh (for example, by holding the references in a C/C++ extension module) will not
perform as expected.

If you do run into a case where auto-reload causes problems, you will need to restart
Zope from the Zope Management Interface's Control Panel or from the command line.
Note that pressing the Stop button in Wing only disconnects from the debug process
and does not terminate Zope.

Alternative Approach to Reloading

The refresh.txt techique for module reloading is discouraged in the Plone community.
Another option for reloading both Zope and Plone filesystem-based code is
plone.reload available from pypi at http://pypi.python.org/pypi/plone.reload.
plone.reload will allow you to reload Python code that has been changed since the
last reload, and also give you the option to reload any zcml configuration changes.

If you are using buildout, add plone.reload to the eggs and zcml sections of your
buildout.cfg and re-run buildout.

To use plone.reload, assuming Zope is running on your local machine at port 8080,
log into the ZMI as a Manager user, then go to http://localhost:8080/@@reload on
your Zope instance with a web browser (append @@reload to the Zope instance root,
not your Plone site if you are using Plone).

Notes:

• If you are using Plone, your Plone product's profile config files (*.xml files) get
loaded through the ZMI at /YourPlone/portal_setup in the import tab.

• Code that uses a @decorator will still likely require a restart.

Setting up Remote Debugging

Configuring Wing for remote debugging can be complicated, so we recommend using
X Windows (Linux/Unix) or Remote Desktop (Windows) to run Wing IDE on the same
machine as Zope but display it remotely. When this is not possible, you can set up
Wing to debug Zope running on another machine, as described below:

• Set up File Sharing -- You will need some mechanism for sharing files between
the Zope host and the Wing IDE host. Windows file sharing, Samba, NFS, and ftp
or rsync mirroring are all options. For secure file sharing via SSH on Linux, try
sshfs.

• Install Wing on the Server -- You will also need to install Wing on the host
where Zope is running, if it is not already there. No license is needed for this
installation, unless you plan to also run the IDE there. If there is no binary

How-Tos for Web Development

28

http://pypi.python.org/pypi/plone.reload
http://localhost:8080/@@reload
http://fuse.sourceforge.net/sshfs.html

distribution of Wing available for the operating system where Zope is running, you
can instead install only the debugger libraries by building them from source code
(contact Wingware for details).

• Basic Configuration -- Follow the instructions for Single-Host Debugging above
first if you have not already done so. Then return here for additional setup
instructions.

• Configure Allowed Hosts -- You will need to add the IP address of the Zope
host to the Allowed Hosts preference in Wing. Otherwise Wing will not accept
your debug connections.

• Configure File Mapping -- Next, set up a mapping between the location of the
Zope installation on your Zope host and the point where it is accessible on you
Wing IDE host. For example, if your Zope host is 192.168.1.1 Zope is installed in
/home/myuser/Zope on that machine, and /home/myuser is mounted on your
Wing IDE host as e:, you would add a Location Map preference setting that
maps 192.168.1.1 to a list containing /home/myuser/Zope and e:/Zope. For
more information on this, see File Location Maps and Location Map Examples in
the Wing IDE manual.

• Set the Zope Host -- Go into Project Properties and set the Zope Host to match
the host name used in configuring the File Location Map in the previous step. This
is used to identify which host mapping should be applied to file names read from
the zope.conf file.

• Modify WingDBG Configuration -- When debugging remotely, the value given
to WingDBG for the Wing Home Directory must be the location where Wing is
installed on the Zope host (the default value will usually need to be changed).

• Check Project Configuration -- Similarly, the paths identified in Project
Properties should be those on the host where Wing IDE is running, not the paths
on the Zope host.

Trouble Shooting Guide

You can obtain additional verbose output from Wing IDE and the debug process as
follows:

• If Zope or Plone on Windows is yielding a Site Error page with a notFoundError
when run under Wing's debugger, you may need to go into the Zope
Management Interface and delete the access rule (... accessRule.py ...). Now,
Zope/Plone runs on port 8080, does not alter the configuration of port 80, and will
work properly with Wing's debug port (50080 by default). If the URL for your front
page is http://localhost:8080/default/front-page, the Wing IDE debug url will

How-Tos for Web Development

29

http://wingware.com/doc/debug/file-location-maps
http://wingware.com/doc/debug/file-location-map-example
http://localhost:8080/default/front-page

always be the same but with the different port:
http://localhost:50080/default/front-page (Thanks for Joel Burton for this tip!)

• Go into the Wing Debugging Service in the Zope Management Interface and set
Log file under the Configure tab. Using <stdout> will cause logging information
to be printed to the console from which Zope was started. Alternatively, set this to
the full path of a log file. This file must already exist for logging to occur.

• Restart Zope and Wing and try to initiate debug.
• Inspect the contents of the log. If you are running Zope and Wing IDE on two

separate hosts, you should also inspect the error-log file on the Wing IDE host
(located in the User Settings Directory). It contains additional logging information
from the Wing IDE process.

For additional help, send these errors logs to support at wingware.com.

Related Documents

Wing IDE provides many other options and tools. For more information:

• Wing IDE Reference Manual, which describes Wing IDE in detail.
• Zope home page, which contains much additional information for Zope

programmers.
• Quick Start Guide and Tutorial which contain additional basic information about

getting started with Wing IDE.

2.7. Using Wing IDE with Turbogears
Wing IDE is an integrated development environment that can be used to develop, test,
and debug Python code that is written for Turbogears, a powerful web development
system. Wing provides auto-completion, call tips, a powerful debugger, and many
other features that help you write, navigate, and understand Python code.

For more information on Wing IDE see the product overview. If you do not already
have Wing IDE installed, download a free trial now. To get started using Wing, refer to
the tutorial in the Help menu in Wing and/or the Wing IDE Quickstart Guide.

In order to debug Turbogears applications, you will need Wing 3.0 or later, since
earlier versions did not support multi-threaded debugging.

How-Tos for Web Development

30

http://localhost:50080/default/front-page
http://wingware.com/doc/install/user-settings-dir
mailto:support@wingware.com
http://wingware.com/doc/manual
http://www.zope.org
http://wingware.com/doc/howtos/quickstart
http://wingware.com/doc/intro/tutorial
http://wingware.com/wingide/
http://www.turbogears.org/
http://wingware.com/products
http://wingware.com/wingide/trial
http://wingware.com/doc/howtos/quickstart

Note

Note that some parts of this document are for Turbogears 1.x only, and others
(as indicated) for Turbogears 2.x only.

Installing Turbogears

The Turbogears website provides complete instructions for installing Turbogears. The
procedure varies slightly by OS. See also the Notes section below.

Configuring Turbogears 1.x to use Wing

This section assumes your Turbogears 1.x project is called wingtest. If not, substitute
your project name in the following instructions.

• Go into the Turbogears instance directory wingtest and run Wing
• Add your instance directory to the project and save it as wingtest.wpr There is

no need to add all of Turbogears to the project; just the instance should suffice.
• Open start-wingtest.py in Wing and set it as main debug file from the Debug

menu
• Edit start-wingtest.py and add the following before the server is started:

import os
import cherrypy
if os.environ.has_key('WINGDB_ACTIVE'):
 cherrypy.config.update({'autoreload.on': False})

This is needed to prevent creation of a sub-process controlled by the
auto-restarter, which breaks debugging since Wing's debugger will not be running
in the sub-process. If you omit this step, the symptom will be failure to stop on any
breakpoints in your Turbogears application.

• Set a breakpoint on the return line of Root.index() in your controllers.py or
somewhere else you know will be reached on a page load

• Start debugging in Wing from the toolbar or debug icon. If Wing issues a warning
about sys.settrace being called in DecoratorTools select
Ignore this Exception Location in the Exceptions tool in Wing and restart
debugging. In general, sys.settrace will break any Python debugger but Wing
and the code in DecoratorTools both take some steps to attempt to continue to
debug in this case.

How-Tos for Web Development

31

http://www.turbogears.org/

• Bring up the Debug I/O tool in Wing and wait until the server output shows that it
has started

• Load http://localhost:8080/ or the page you want to debug in a browser
• Wing should stop on your breakpoint. Be sure to look aroung a bit with the Stack

Data tool and the in Wing Pro the Debug Probe (a command line that works in the
runtime state of your current debug stack frame).

Configuring Turbogears 2.x to use Wing

Turbogears 2.0 changed some things about how Turbogears instances are packaged
and launched, so the configuration is different than with Turbogears 1.x.

This section assumes your Turbogears 2.x project is called wingtest. If not, substitute
your project name in the following instructions.

• Go into the Turbogears instance directory wingtest and run Wing
• Add your instance directory to the project and save it as wingtest.wpr There is

no need to add all of Turbogears to the project; just the instance should suffice.
• Add also the paster to your project. Then open it and and set it as main debug file

from the Debug menu
• Open up the Python Shell tool and type import sys followed by sys.executable

to verify whether Wing is using the Python that will be running Turbogears. If not,
open Project Properties and set the Python Executable to the correct one.

• Next right click on paster and select File Properties. Under the Debug tab, set
Run Arguments to serve development.ini (do not include the often-used
--reload argument, as this will interfere with debugging). Then also set
Initial Directory to the full path of wingtest.

• Set a breakpoint on the return line of RootController.index() in your root.py or
somewhere else you know will be reached on a page load

• Start debugging in Wing from the toolbar or debug icon. If Wing issues a warning
about sys.settrace being called in DecoratorTools select
Ignore this Exception Location in the Exceptions tool in Wing and restart
debugging. In general, sys.settrace will break any Python debugger but Wing
and the code in DecoratorTools both take some steps to attempt to continue to
debug in this case.

• Bring up the Debug I/O tool in Wing and wait until the server output shows that it
has started

• Load http://localhost:8080/ or the page you want to debug in a browser
• Wing should stop on your breakpoint. Be sure to look aroung a bit with the Stack

Data tool and in Wing Pro the Debug Probe (a command line that works in the
runtime state of your current debug stack frame).

How-Tos for Web Development

32

Notes for Turbogears 1.x

Turbogears 1.x will install itself into whichever instance of Python runs the installer
script, and only certain versions of Python work with a given version of Turbogears.

If you want to avoid adding Turbogears to an install of Python that you are using for
other purposes, you can install Python to a new location and dedicate that instance to
Turbogears. On Linux, this can be done as follows (assuming you create
/your/path/to/turbogears as the place to install):

• In a Python source dist do:

./configure --prefix=/your/path/to/turbogears
make
make install

• Download tgsetup.py (or from the Turbogears website
• Change to /your/path/to/turbogears
• Run bin/python tgsetup.py --prefix=/your/path/to/turbogears (this works in

Turbogears 1.0.5 but in older versions you may need to edit tgsetup.py to
replace /usr/local/bin with /your/path/to/turbogears/bin.

• Run bin/tgadmin quickstart
• Enter project name wingtest and defaults for the other options

Similar steps should work on Windows and OS X.

Notes for Turbogears 2.x

Turbogears 2.x uses virtualenv to separate what it installs from your main Python
installation so in most cases you can install Turbogears 2.x using an installation of
Python that you also use for other purposes. If, however, a clean or separate Python
installation is desired, you can install Python to a new location and dedicate that
instance to Turbogears. On Linux, this can be done as follows (assuming you create
/your/path/to/turbogears as the place to install):

• In a Python source dist do:

./configure --prefix=/your/path/to/turbogears
make
make install

• Then install easy_install by running its setup script with the Python at
/your/path/to/turbogears/bin/python.

How-Tos for Web Development

33

• Whenever the Turbogears installation instructions call for invoking easy_install
use the one in /your/path/to/turbogears/bin

Similar steps should work on Windows and OS X.

Related Documents

Wing IDE provides many other options and tools. For more information:

• Wing IDE Reference Manual, which describes Wing IDE in detail.
• Turbogears home page, which provides links to documentation.
• Wing IDE Quickstart Guide which contains additional basic information about

getting started with Wing IDE.

2.8. Using Wing IDE with Google App Engine
Wing IDE is an integrated development environment that can be used to write, test,
and debug Python code that is written for the Google App Engine. Wing provides
auto-completion, call tips, a powerful debugger, and many other features that help you
write, navigate, and understand Python code. Since Google App Engine will reload
your code when you save it to disk, you can achieve a very fast edit/debug cycle
without restarting the debug process.

For more information on Wing IDE see the product overview. If you do not already
have Wing IDE installed, download a free trial now. To get started using Wing, refer to
the tutorial in the Help menu in Wing and/or the Wing IDE Quickstart Guide.

Creating a Project

Before trying to configure a Wing IDE project, first install and set up Google App
Engine and verify that it is working by starting it outside of Wing IDE and testing it with
a web browser. It is also a good idea to install App Engine upgrades at this time,
before doing anything else.

Then create a project in Wing using New Project in the Project menu and selecting
Google App Engine as the project type. Then use Add Directory in the Project
menu to add your source directories to the project. You should also add at least
dev_appserver.py, which is located in the top level of the Google SDK directory.

Next open up dev_appserver.py in Wing's editor and select Set Current as
Main Debug File in the Debug menu. This tells Wing to use this file as the main entry
point, which is then highlighted in red in the Project tool. If a main debug file is
already defined the Debug menu item will be Clear Main Debug File instead.

How-Tos for Web Development

34

http://wingware.com/doc/manual
http://www.turbogears.org/
http://wingware.com/doc/howtos/quickstart
http://wingware.com/wingide/
https://cloud.google.com/appengine/docs?csw=1
http://wingware.com/products
http://wingware.com/wingide/trial
http://wingware.com/doc/howtos/quickstart

Next you need to go into Project Properties and set Debug/Execute > Debug
Child Processes to Always Debug Child Processes. This is needed because App
Engine creates more than one process.

Finally, save your project with Save Project in the Project menu. Store the project at
or near the top level of your source tree.

Configuring the Debugger

Before trying to debug make sure you stop Google App Engine if it is running already
outside of Wing IDE.

You can debug code running under Google App Engine by selecting Start / Continue
from the Debug menu (or using the green run icon in the toolbar). This will bring up a
dialog that contains a Run Arguments field that must be altered to specify the
application to run. For example, to run the guestbook demo that comes with the SDK,
the run arguments would be "${GOOGLE_APPENGINE_DIR}/demos/guestbook"
where ${GOOGLE_APPENGINE_DIR} is replaced by the full pathname of the
directory the SDK is installed in. The quotation marks are needed if the pathname
contains a space. In other apps, this is the directory path to where the app.yaml file is
located. If this path name is incorrect, you will get an error when you start debugging.

You can also leave the environment reference ${GOOGLE_APPENGINE_DIR} in the
path and define an environment variable under the Environment tab of the Debug
dialog. Or use ${WING:PROJECT_DIR} instead to base the path on the directory
where the project file is located.

For most projects, you'll need to add at least --max_module_instances=1 to the run
arguments, and you may also want to add --threadsafe_override=false. These
command line arguments disable some of GAE's threading and concurrency features
that can prevent debugging from working properly.

Add a --port=8082 style argument if you wish to change the port number that Google
App Engine is using when run from Wing's debugger. Otherwise the default of 8080
will be used.

Using a partial path for the application may also be possible if the Initial Directory is
also set in under the Debug tab.

Next, click the OK button to start debugging. Once the debugger is started, the Debug
I/O tool (accessed from the Tools menu) should display output from App Engine, and
this should include a message indicating the hostname and port at which App Engine
is taking requests. Requests may be made with a web browser using that URL. If
Google App Engine asks to check for updates at startup, it will do so in the Debug I/O
tool and you can press "y" or "n" and then Enter as you would on the command line.

How-Tos for Web Development

35

Or send the --skip_sdk_update_check argument on the command line to
dev_appserver.py to disable this.

Using the Debugger

After you have configured the debugger, set a break point in any Python code that is
executed by a request and load the page in the browser. For example, to break when
the main page of the guestbook demo is generated, set a breakpoint in the method
Mainpage.get in guestbook.py. When you reach the breakpoint, the browser will sit
and wait while Wing displays a red run marker on code at the breakpoint and other
lines as you step through code using the buttons in Wing IDE's toolbar.

Check out the Stack Data and Watch tools in the Tools menu to inspect debug data,
or just use the Debug Probe, which is an interactive Python shell that works in the
context of the current debug stack frame. When the debug process is paused, both
the Debug Probe and editor show auto-completion and call tips based on live runtime
state, making it quick and easy to write and try out new code. You can also see data
values by hovering the mouse over symbols in the editor or Debug Probe and you
can press F4 to go to the point of definition.

Continuing with the green run button in the toolbar will complete the page load in the
browser, unless a breakpoint or exception is reached first.

To set up multiple entry points, use Named Entry Points in the Debug menu. These
can contain different commands lines and environment for dev_appserver.py.

You may edit the Python code for an application while the App Engine is running, and
then reload in your browser to see the result of any changes made. In most cases,
there is no need to restart the debug process after edits are made. However, if you try
the browser reload too quickly, while App Engine is still restarting, then it may not
respond or breakpoints may be missed.

To learn more about the debugger, try the Tutorial in Wing's Help menu.

Improving Auto-Completion and Goto-Definition

Wing can't parse the sys.path hackery in more recent versions of Google App Engine
so it may fail to find some modules for auto-completion, goto-definition and other
features. To work around this, set a breakpoint in _run_file in dev_appserver.py and
start debugging. Then, after script_name has been set, in the Debug Probe tool (in
Wing Pro only) type the following:

os.pathsep.join(_PATHS.script_paths(script_name))

How-Tos for Web Development

36

Copy this to the clipboard and open up the file properties for dev_appserver.py by
right-clicking on the file. Then, in Project Properties under the Environment tab
select Custom for the Python Path, click on the View as Text button and paste in the
extra path.

You will need to redo this if you move the app engine installation, or you can use
${WING:PROJECT_DIR} to convert those paths to base on the location of the project
file.

If you use more than one app within your project with multiple Named Entry Points,
you'll want to set this Python Path into the Named Entry Points's Launch Configuration
environment instead of placing it in Project Properties.

Trouble-shooting

App Engine runs code in a secure environment that prevents access to some system
information, including process ID. This causes some of the sub-processes created by
App Engine to be shown with process id -1. In this case they are not listed as children
of the parent process and you will need to kill both processes, one at a time, from the
toolbar or Debug menu.

Windows users may need to set the TZ environment variable to UTC via the
environment field in Project Properties to work around problems with setting
os.environ['TZ'] while a process is running (this is a Windows runtime bug). One
possible symptom of this is repeated 302 redirects that prevent logging in or other use
of the site.

The Debugger > Exceptions > Report Exceptions preference should be set to
When Printed (the default) when working with Google App Engine or Wing will report
some additional exceptions that are handled internally when running Google App
Engine outside of the debugger.

If you have unchecked the "Show this dialog before each run" checkbox in the debug
dialog shown when launching dev_appserver.py and need to alter the command line
arguments or other values there, you can access the dialog by right clicking on
dev_appserver.py in the editor or Project and selecting Properties.

Related Documents

Wing IDE provides many other options and tools. For more information:

• Wing IDE Reference Manual, which describes Wing IDE in detail.
• Google App Engine home page, which provides links to downloads and

documentation.

How-Tos for Web Development

37

http://wingware.com/doc/manual
https://cloud.google.com/appengine/docs?csw=1

• Wing IDE Quickstart Guide which contains additional basic information about
getting started with Wing IDE.

• Wing IDE Tutorial for a more comprehensive introduction to Wing IDE.

2.9. Using Wing IDE with mod_wsgi
Wing IDE is an integrated development environment that can be used to write, test,
and debug Python code that is running under mod_wsgi and other Python-based web
development technologies. Wing provides auto-completion, call tips, a powerful
debugger, and many other features that help you write, navigate, and understand
Python code.

For more information on Wing IDE see the product overview. If you do not already
have Wing IDE installed, download a free trial now.

To get started using Wing, refer to the tutorial in the Help menu in Wing and/or the
Wing IDE Quickstart Guide.

Debugging Setup

When debugging Python code running under mod_wsgi, the debug process is
initiated from outside of Wing IDE, and must connect to the IDE. This is done with
wingdbstub according to the instructions in the Debugging Externally Launched Code
section of the manual.

Because of how mod_wsqi sets up the interpreter, be sure to set kEmbedded=1 in
your copy of wingdbstub.py and use the debugger API to reset the debugger and
connection as follows:

import wingdbstub
wingdbstub.Ensure()

Then click on the bug icon in lower left of Wing's window and make sure that
Accept Debug Connections is checked. After that, you should be able to reach
breakpoints by loading pages in your browser.

Disabling stdin/stdout Restrictions

In order to debug, may also need to disable the WSGI restrictions on stdin/stdout with
the following mod_wsgi configuration directives:

WSGIRestrictStdin Off
WSGIRestrictStdout Off

How-Tos for Web Development

38

http://wingware.com/doc/howtos/quickstart
http://wingware.com/doc/intro/tutorial
http://wingware.com/wingide
http://www.modwsgi.org/
http://wingware.com/products
http://wingware.com/wingide/trial
http://wingware.com/doc/howtos/quickstart
http://wingware.com/doc/debug/debugging-externally-launched-code

Related Documents

Wing IDE provides many other options and tools. For more information:

• Wing IDE Reference Manual, which describes Wing IDE in detail.
• Wing IDE Quickstart Guide which contains additional basic information about

getting started with Wing IDE.

2.10. Using Wing IDE with mod_python
Wing IDE is an integrated development environment that can be used to write, test,
and debug Python code that is run by the mod_python module for the Apache web
server. Wing provides auto-completion, call tips, a powerful debugger, and many other
features that help you write, navigate, and understand Python code.

For more information on Wing IDE see the product overview. If you do not already
have Wing IDE installed, download a free trial now.

To get started using Wing, refer to the tutorial in the Help menu in Wing and/or the
Wing IDE Quickstart Guide.

Introduction

This document assumes mod_python is installed and Apache is configured to use it;
please see the installation chapter of the mod_python manual for information on how
to install it.

Since Wing's debugger takes control of all threads in a process, only one http request
can be debugged at a time. In the technique described below, a new debugging
session is created for each request and the session is ended when the request
processing ends. If a second request is made while one is being debugged, it will
block until the first request completes. This is true of requests processed by a single
Python module and it is true of requests processed by multiple Python modules in the
same Apache process and its child processes. As a result, it is recommended that
only one person debug mod_python based modules per Apache instance and
production servers should not be debugged.

Quick Start

• Copy wingdbstub.py (from the install directory listed in Wing's About box) into
either the directory the module is in or another directory in the Python path used
by the module.

• Edit wingdbstub.py if needed so the settings match the settings in your
preferences. Typically, nothing needs to be set unless Wing's debug preferences

How-Tos for Web Development

39

http://wingware.com/doc/manual
http://wingware.com/doc/howtos/quickstart
http://wingware.com/wingide
http://www.modpython.org
http://wingware.com/products
http://wingware.com/wingide/trial
http://wingware.com/doc/howtos/quickstart

have been modified. If you do want to alter these settings, see the Remote
Debugging section of the Wing IDE reference manual for more information.

• Copy wingdebugpw from your User Settings Directory into the directory that
contains the module you plan to debug. This step can be skipped if the module to
be debugged is going to run on the same machine and under the same user as
Wing IDE. The wingdebugpw file must contain exactly one line.

• Insert import wingdbstub at the top of the module imported by the mod_python
core.

• Insert if wingdbstub.debugger != None: wingdbstub.debugger.StartDebug()
at the top of each function that is called by the mod_python core.

• Allow debug connections to Wing by setting the Accept Debug Connections
preference to true.

• Restart Apache and load a URL to trigger the module's execution.

Example

To debug the hello.py example from the Publisher chapter of the mod_python tutorial,
modify the hello.py file so it contains the following code:

import wingdbstub

def say(req, what="NOTHING"):
 if wingdbstub.debugger != None:
 wingdbstub.debugger.StartDebug()
 return "I am saying %s" % what

And set up the mod_python configuration directives for the directory that hello.py is in
as follows:

AddHandler python-program .py
PythonHandler mod_python.publisher

Then set a breakpoint on the return "I am saying %s" % what line, make sure Wing
is listening for a debug connection, and load http://[server]/[path]/hello.py in a web
browser (substitute appropriate values for [server] and [path]). Wing should then stop
at the breakpoint.

Notes

In some cases, we've seen Wing fail to debug the second+ request to mod_python. If
this happens, try the following variant of the above code:

How-Tos for Web Development

40

http://wingware.com/doc/debug/remote-debugging
http://wingware.com/doc/debug/remote-debugging
http://wingware.com/doc/install/user-settings-dir

import wingdbstub
import time

if wingdbstub.debugger != None:
 wingdbstub.debugger.StopDebug()
 time.sleep(2)
 wingdbstub.debugger.StartDebug()

This reinitialized debugging with each page load. The time.sleep() duration may be
shortened, or may need to be lengthened if Wing does not manage to drop the debug
connection and initiate listening for a new connection quickly enough.

Related Documents

• Wing IDE Reference Manual, which describes Wing IDE in detail.
• Mod_python Manual, which describes how to install, configure, and use

mod_python.

2.11. Using Wing IDE with Paste and Pylons
Wing IDE is an integrated development environment that can be used to write, test,
and debug Python code that is written for Paste and Pylons (which is based on
Paste). Wing provides auto-completion, call tips, a powerful debugger, and many
other features that help you write, navigate, and understand Python code.

For more information on Wing IDE see the product overview. If you do not already
have Wing IDE installed, download a free trial now. To get started using Wing, refer to
the tutorial in the Help menu in Wing and/or the Wing IDE Quickstart Guide.

In order to debug Pylons and Paste applications, you will need Wing 3.0 or later, since
earlier versions did not support multi-threaded debugging.

Installing Paste and/or Pylons

The Pylons website and Paste website provide complete instructions for installing
Pylons or Paste

Debugging in Wing IDE

Paste and Pylons can be set to run in an environment that spawns and automatically
relaunches a sub-process for servicing web requests. This is used to automatically
restart the server if for some reason it crashes. However, this does not work with
Wing's debugger since the debugger has no way to cause the sub-process to be
debugged when it is started by the main process.

How-Tos for Web Development

41

http://wingware.com/doc/manual
http://www.modpython.org/
http://wingware.com/wingide/
http://pythonpaste.org/
http://pylonshq.com/
http://wingware.com/products
http://wingware.com/wingide/trial
http://wingware.com/doc/howtos/quickstart
http://pylonshq.com/
http://pythonpaste.org/

To avoid this, do not specify the --reload flag for Paste. Place the following in a file
that you add to your project and set as the main debug file:

from paste.script.serve import ServeCommand
ServeCommand("serve").run(["development.ini"])

This may vary somewhat, as necessary for your application.

Debugging Mako Templates

Wing cannot debug Mako templates directly, but it is possible to debug them through
the .py translation (stored in data/templates in the Pylon tree).

Related Documents

Wing IDE provides many other options and tools. For more information:

• Wing IDE Reference Manual, which describes Wing IDE in detail.
• Pylons home page, which provides links to documentation.
• Paste home page, which provides links to documentation.
• Wing IDE Quickstart Guide which contains additional basic information about

getting started with Wing IDE.

2.12. Using Wing IDE with Webware
Wing IDE is an integrated development environment that can be used to write, test,
and debug Python code that is written for Webware, an open source web
development framework. Wing provides auto-completion, call tips, a powerful
debugger, and many other features that help you write, navigate, and understand
Python code.

For more information on Wing IDE see the product overview. If you do not already
have Wing IDE installed, download a free trial now.

To get started using Wing, refer to the tutorial in the Help menu in Wing and/or the
Wing IDE Quickstart Guide.

How-Tos for Web Development

42

http://wingware.com/doc/manual
http://pylonshq.com/
http://pythonpaste.org/
http://wingware.com/doc/howtos/quickstart
http://wingware.com/wingide
http://www.webwareforpython.org/
http://wingware.com/products
http://wingware.com/wingide/trial
http://wingware.com/doc/howtos/quickstart

Introduction

Wing IDE allows you to graphically debug a Webware application as you interact with
it from your web browser. Breakpoints set in your code from the IDE will be reached,
allowing inspection of your running code's local and global variables with Wing's
various debugging tools. In addition, in Wing IDE Pro, the Debug Probe tab allows
you to interactively execute methods on objects and get values of variables that are
available in the context of the running web app.

There is more than one way to do this, but in this document we focus on an "in
process" method where the Webware server is run from within Wing as opposed to
attaching to a remote process. The technique described below was tested with
Webware 0.9 and Python 2.4 on CentOS Linux. It should work with other versions
and on other OSes as well. Your choice of browser should have no impact on this
technique.

Setting up a Project

Though Wing supports the notion of "Projects" for organizing one's work for this
debugging scenario you can use the Default Project and simply add your source
code directory to it by using Add Directory from the Project menu.

You will also need to specify a Python Path in your Project Properties with
something like following (your actual paths depend on your installation of Webware
and OS):

/usr/local/lib/Webware-0.9/WebKit:/usr/local/lib/Webware-0.9:/home/dev/mycodebase

Note that on Windows, the path separator should be ';' (semicolon) instead. The
Webware MakeAppDir.py script creates a default directory structure and this
example assumes that the source code is nested within this directory.

To debug your Webware app you'll actually be running the DebugAppServer and not
the regular AppServer, so you'll need to bring in the Debug AppServer and a couple
of other files with these steps:

1. Copy the DebugAppServer.py, ThreadedAppServer.py, and Launch.py from
the WebKit directory and put them in the root of the directory that
MakeAppDir.py created.

2. Right click on Launch.py in Wing's editor and select the menu choice
File Properties. Click the Debug tab and enter DebugAppServer.py in the
Run Arguments field. If you're using the default project then leave the initial
directory and build command settings as they are.

How-Tos for Web Development

43

3. If you need to modify the version of Python you're running, you can change the
Python Executable on the Environment tab of this debug properties window, or
project-wide from the Project Properties.

4. Optionally, after adding Launch.py to the project, use the Set Main Debug File
item in the Debug menu to cause Wing to always launch this file when debug is
started, regardless of which file is current in the editor.

Starting Debug

To debug, press the green Debug icon in the toolbar. If you did not set a main debug
file in the previous section, you must do this when Launch.py is the current file.

The file properties dialog will appear. Optionally, deselect Show this
dialog before each run. If you do this you can access the dialog again later by right
clicking on the file in Wing's editor and selecting Properties.

Click OK to start the debug process. The Debug I/O tool will show output from the
Webware process as it starts up. What you will see there depends upon your
Webware application and server settings, but you should see some log messages
scroll by. If there is a path or other kind of problem as the debugging process
proceeds errors will display in the Debug I/O tool or in a pop-up error message in
Wing if you have a missing library or run into another unhandled exception.

Once the process has started up, you will be able to access web pages from your
browser according to your configuration of Webware, just as you would when running
the server outside of Wing.

Now for the fun part -- fire up your browser and go to the home page of your
application. Go into the source file for any Python servlet in Wing and set a breakpoint
somewhere in the code path that you know will be executed when a given page is
requested. Navigate to that page in your browser and you should see the Wing
program icon in your OS task bar begin to flash. (You'll see that the web page won't
finish loading -- this is because the debugger has control now; the page will finish
loading when you continue running your app by pressing the Debug icon in the
toolbar).

Now you can make use of all of the powerful debugging functionality available in Wing
instead of sprinkling your code with print statements.

Related Documents

Wing IDE provides many other options and tools. For more information:

• Wing IDE Reference Manual, which describes Wing IDE in detail.

How-Tos for Web Development

44

http://wingware.com/doc/manual

• Wing IDE Quickstart Guide which contains additional basic information about
getting started with Wing IDE.

2.13. Debugging Web CGIs with Wing IDE
Wing IDE is an integrated development environment that can be used to write, test,
and debug CGI scripts written in Python. Debugging takes place in the context of the
web server, as scripts are invoked during a browser page load. Wing also provides
auto-completion, call tips, and many other features that help you write, navigate, and
understand Python code.

For more information on Wing IDE see the product overview. If you do not already
have Wing IDE installed, download a free trial now.

To get started using Wing, refer to the tutorial in the Help menu in Wing and/or the
Wing IDE Quickstart Guide.

Introduction

To set up your CGIs for debugging with Wing IDE, refer to the Debugging Externally
Launched Code section of the manual. Pay careful attention to the permissions on
files, especially if your web server is running as a different user than the process that
is running Wing IDE. You will also need to make sure that the wingdebugpw file is
referenced correctly as described in the instructions.

Tips and Tricks

The rest of this guide provides some tips specific to the task of debugging CGIs:

(1) If Wing is failing to stop on breakpoints, check whether you are loading a web page
that loads multiple parts with separate http requests -- in that case, Wing may still be
busy processing an earlier CGI request when a new one comes in and will fail to stop
on breakpoints because only one debug process is serviced at a time. This is a
limitation in Wing. The work-around is to load specific parts of the page in the browser
by entering the URL you wish to debug.

(2) Any content from your CGI script that isn't understood by the web server will be
written to the server's error log. Since this can be annoying to search through, it is
much easier to ensure that all output, including output made in error, is displayed in
your web browser.

To do this, insert the following at the very start of your code, before importing
wingdbstub or calling the debugger API:

print "Content-type: text/html\n\n\n<html>\n"

How-Tos for Web Development

45

http://wingware.com/doc/howtos/quickstart
http://wingware.com/products
http://wingware.com/wingide/trial
http://wingware.com/doc/howtos/quickstart
http://wingware.com/doc/debug/debugging-externally-launched-code
http://wingware.com/doc/debug/debugging-externally-launched-code

(In Python 3.x, use print() instead of print)

This will cause all subsequent data to be included in the browser window, even if your
normal Content-type specifier code is not being reached.

(3) Place a catch-all exception handler at the top level of your CGI code and print
exception information to the browser. The following function is useful for inspecting the
state of the CGI environment when an exception occurs (in Python 3.x replace print
with print()):

import sys
import cgi
import traceback
import string

#---
def DisplayError():
 """ Output an error page with traceback, etc """

 print "<H2>An Internal Error Occurred!</H2>"
 print "<I>Runtime Failure Details:</I><P>"

 t, val, tb = sys.exc_info()
 print "<P>Exception = ", t, "
"
 print "Value = ", val, "\n", "<p>"

 print "<I>Traceback:</I><P>"
 tbf = traceback.format_tb(tb)
 print "<pre>"
 for item in tbf:
 outstr = string.replace(item, '<', '<')
 outstr = string.replace(outstr, '>', '>')
 print string.replace(outstr, '\n', '\n'), "
"
 print "</pre>"
 print "<P>"

 cgi.print_environ()
 print "

"

(4) If you are using wingdbstub.py, you can set kLogFile to receive extra information
from the debug server, in order to debug problems connecting back to Wing IDE.

(5) If you are unable to see script output that may be relevant to trouble-shooting, try
invoking your CGI script from the command line. The script may fail but you will be
able to see messages from the debug server, when those are enabled.

How-Tos for Web Development

46

(6) If all else fails, read your web browser documentation to locate and read its error
log file. On Linux with Apache, this is often in /var/log/httpd/error_log. Any errors not
seen on the browser are appended there.

(7) Once you have the debugger working for one CGI script, you will have to set up
the wingdbstub import in each and every other top-level CGI in the same way.
Because this can be somewhat tedious, and because the import needs to happen at
the start of each file (in the __main__ scope), it makes sense to develop your code so
that all page loads for a site are through a single entry point CGI and page-specific
behavior is obtained via dispatch within that CGI to other modules. With Python's
flexible import and invocation features, this is relatively easy to do.

How-Tos for GUI Development
The following How-Tos provide tips and short cuts for using a number of popular GUI
development frameworks with Wing IDE.

3.1. Using Wing IDE with wxPython
Wing IDE is an integrated development environment that can be used to write, test,
and debug Python code that is written for the powerful wxPython cross-platform GUI
development toolkit. Wing provides auto-completion, call tips, a powerful debugger,
and many other features that help you write, navigate, and understand Python code.

For more information on Wing IDE see the product overview. If you do not already
have Wing IDE installed, download a free trial now.

To get started using Wing, refer to the tutorial in the Help menu in Wing and/or the
Wing IDE Quickstart Guide.

Introduction

wxPython is a good choice for GUI developers. It currently available for MS Windows,
Linux, Unix, and Mac OS X and provides native look and feel on each of these
platforms.

While Wing IDE does not provide a GUI builder for wxPython, it does provide the most
advanced capabilities available for the Python programming language, and it can be
used with other available GUI builders, as described below.

Installation and Configuration

Take the following steps to set up and configure Wing IDE for use with wxPython:

How-Tos for GUI Development

47

http://wingware.com/wingide
http://www.wxpython.org/
http://wingware.com/products
http://wingware.com/wingide/trial
http://wingware.com/doc/howtos/quickstart

• Install Python and Wing. You will need a specific version of Python depending on
the version of wxPython you plan to use. Check the wxPython Getting Started
Wiki when in doubt. See the generic Wing IDE Quickstart Guide for installation
instructions.

• Install wxPython. See the wxPython's website Getting Started Wiki for installation
instructions. Note that you need to install the version of wxPython to match your
Python version, as indicated on the download page.

• Start Wing from the Start menu on Windows, the Finder or OS X, or by typing
wing5.1 on the command line on Linux other Posix systems. Once Wing has
started, you may want to switch to reading this How-To from the Help menu. This
will add links to the functionality of the application.

• Select Show Python Environment from the Source menu and if the Python
version reported there doesn't match the one you're using with wxPython, then
select Project Properties from the Project menu and use the
Python Executable field to select the correct Python version.

• Open the wxPython demo into Wing IDE. This may be located within your Python
installation at site-packages/wx/demo/demo.py, or
Lib/site-packages/wx/demo/demo.py, or
c:\Program Files\wxPython2.6 Docs and Demos\demo, or similar location. On
Linux it may be part of a separate wx examples package, for example on Ubuntu
6.06 LTS the demo is in the package wx2.6-examples, is installed in
/usr/share/doc/wx2.6-examples/examples/wxPython, and some files in this
directory need to be gunzip``ed before the demo will work.
Once you've opened ``demo.py, select Add Current File from the Project
menu. If you can't find demo.py but have other wxPython code that works, you
can also just use that. However, the rest of this document assumes you're using
demo.py so you will have to adapt the instructions.

• Set demo.py as main entry point for debugging using the Set Main Debug File
item in the Debug menu.

• Save your project to disk. Use a name ending in .wpr.

Test Driving the Debugger

Now you're ready to try out the debugger. To do this:

Start debugging with the Start / Continue item in the Debug menu. Uncheck the
Show this dialog before each run checkbox at the bottom of the dialog that appears
and select OK.

How-Tos for GUI Development

48

http://wiki.wxpython.org/index.cgi/Getting_Started
http://wiki.wxpython.org/index.cgi/Getting_Started
http://wingware.com/doc/howtos/quickstart
http://wiki.wxpython.org/index.cgi/Getting_Started
http://www.wxpython.org/download.php

The demo application will start up. If its main window doesn't come to front, bring it to
front from your task bar or window manager. Try out the various demos from the tree
on the left of the wxPython demo app.

Important: In earlier wxPython 2.6 versions, a change to the demo code breaks all
debuggers by not setting the co_filename attribute on code objects correctly. To fix
this, change the line that reads description = self.modules[modID][2] around line
804 in demo\main.py to instead read description = self.modules[modID][3] -- Wing
will not stop at breakpoints until this is done.

Next open ImageBrowser.py (located in the same directory as demo.py) into Wing
IDE. Set a breakpoint on the first line of runTest() by clicking on the dark grey left
margin. Go into the running demo app and select More Dialogs / ImageBrowser. Wing
will stop on your breakpoint.

Select Stack Data from the Tools menu. Look around the stack in the popup at the
top of the window and the locals and globals shown below that for the selected stack
frame. You may see some sluggishness (a few seconds) in displaying values because
of the widespread use of from wx import * in wxPython code, which imports a huge
number of symbols into the globals name space. This depends on the speed of your
machine.

Select Debug Probe (Wing Pro only) from the Tools menu. This is an interactive
command prompt that lets you type expressions or even change values in the context
of the stack frame that is selected on the Debugger window when your program is
paused or stopped at an exception. It is a very powerful debugging tool.

Also take a look at these tools available from the Tools menu:

• I/O -- displays debug process output and processes keyboard input to the debug
process, if any

• Exceptions -- displays exceptions that occur in the debug process
• Modules (Wing Pro only) -- browses data for all modules in sys.modules
• Watch (Wing Pro only) -- watches values selected from other value views (by

right-clicking and selecting one of the Watch items) and allows entering
expressions to evaluate in the current stack frame

Test Driving the Source Browser

Don't forget to check out Wing's powerful source browser:

• Add package Lib/site-packages/wx or site-packages/wx inside your Python
installation to your project file with the Add Directory item in the Project menu.

How-Tos for GUI Development

49

• After doing so, Wing may consume significant CPU for some time, depending on
the speed of your machine. As it does this, you can already bring up the Source
Browser from the Tools menu. Just be patient if things are a bit sluggish at first;
there is an awful lot of Python code that Wing needs to analyse. Once the initial
analysis is done, Wing will return to being responsive since the results are cached
(a similar but shorter effect is seen when Wing is restarted, as it reads the
analysis disk cache).

• Select Browse Project Classes mode at the top of the source browser. This is
generally the best view to use for wxPython. If you duse the Browse Project
Modules view, it helps to select Hide Inherited Classes from the Options menu
in the browser.

• Use the right-click menu to zoom to base classes. In general in Wing,
right-clicking will bring up menus specific to the tool being clicked on.

• Related to the Source Browser is the auto-completion capability in Wing's source
editor. Try typing in one of the wxPython source files and you will see the
auto-completer appear. Tab completes the currently selected item, but you can
add Enter to the Completion Keys preference to also complete when the Enter
key is pressed. See the Wing IDE Quickstart Guide for information on other
commonly used preferences. Note: Depending on the speed of your machine, the
auto-completer may be sluggish at first, once again due to the large number of
symbols imported into most wxPython files with from wx import *. However, this
should only happen once per Wing IDE session.

• See also the Source Assistant tool in the Tools menu. This provides additional
information about source constructs in the active source editor as the insertion
cursor or selection is moved around. Note that this tool is also integrated with the
source browser, and with the auto-completer in the editor, Python Shell, and
Debug Probe (in Wing Pro).

Using a GUI Builder

Wing IDE doesn't currently include a GUI builder for wxPython but it can be used with
other tools, such as Boa Constructor, which does provide a GUI builder but doesn't
have the raw power of Wing IDE's debugger and source browser.

To use an external GUI builder, configure Wing to automatically reload files that
are altered by the GUI builder. This is done in Preferences in the Files Reloading
area.

Then you can run Wing IDE and your GUI builder at the same time, working with both
in an almost seamless manner.

How-Tos for GUI Development

50

http://wingware.com/doc/howtos/quickstart
http://boa-constructor.sourceforge.net/

A Caveat: Because Python lends itself so well to writing data-driven code, you may
want to reconsider using a GUI builder for some tasks. In many cases, Python's
introspection features make it possible to write generic GUI code that you can use to
build user interfaces on the fly based on models of your data and your application.
This can be much more efficient than using a GUI builder to craft individual menus
and dialogs by hand. In general hand-coded GUIs also tend to be more maintainable.

Related Documents

Wing IDE provides many other options and tools. For more information:

• Wing IDE Reference Manual, which describes Wing IDE in detail.
• wxPython Getting Started page, which contains much additional information for

wxPython programmers.
• Wing IDE Quickstart Guide which contains additional basic information about

getting started with Wing IDE.

3.2. Using Wing IDE with PyQt
Wing IDE is an integrated development environment that can be used to write, test,
and debug Python code that is written for the PyQt cross-platform GUI development
toolkit. Wing provides auto-completion, call tips, a powerful debugger, and many other
features that help you write, navigate, and understand Python code.

For more information on Wing IDE see the product overview. If you do not already
have Wing IDE installed, download a free trial now.

To get started using Wing, refer to the tutorial in the Help menu in Wing and/or the
Wing IDE Quickstart Guide.

Introduction

PyQt is a commercial GUI development environment that runs with native look and
feel on Windows, Linux/Unix, Mac OS, and mobile devices. While Wing IDE does not
include a GUI builder for PyQt, it does provide the most advanced capabilities
available for the Python programming language and it can be used with other
available GUI builders, as described below.

Installation and Configuration

Take the following steps to set up and configure Wing IDE for use with PyQt:

• Install Python, PyQt, and Wing. The Wing IDE Quickstart Guide provides
installation instructions for Wing.

How-Tos for GUI Development

51

http://wingware.com/doc/manual
http://wiki.wxpython.org/index.cgi/Getting_Started
http://wingware.com/doc/howtos/quickstart
http://wingware.com/wingide
http://www.riverbankcomputing.co.uk/software/pyqt/
http://wingware.com/
http://wingware.com/wingide/trial
http://wingware.com/doc/howtos/quickstart
http://wingware.com/doc/howtos/quickstart

• Start Wing from the Start menu on Windows, the Finder on OS X, or by typing
wing5.1 on the command line on Linux other Posix systems. Once Wing has
started, you may want to switch to reading this How-To from the Help menu. This
will add links to the functionality of the application.

• Select Show Python Environment from the Source menu and if the Python
version reported there doesn't match the one you're using with PyQt, then select
Project Properties from the Project menu and use the Python Executable field
to select the correct Python version.

• Open examples/demos/qtdemo/qtdemo.py into Wing IDE (located within your
Python installation) and select Add Current File from the Project menu.

• Set qtdemo.py as main entry point for debugging with Set Main Debug File in
the Debug menu.

• Save your project to disk. Use a name ending in .wpr.

Test Driving the Debugger

Now you're ready to try out the debugger. To do this:

• Start debugging with the Start / Continue item in the Debug menu. Uncheck the
Show this dialog before each run checkbox at the bottom of the dialog that
appears and select OK. You can visit this dialog again later by right clicking on
qtdemo.py in the Project view and selecting File Properties or by right clicking
on the editor.

• The demo application will start up. If its main window doesn't come to front, bring
it to front from your task bar or window manager.

• Next open menumanager.py from the examples/demos/qtdemo directory and
set a breakpoint on the first line of the method itemSelection. Once set, this
breakpoint should be reached whenever you click on a button in the qtdemo
application.

• Use the Stack Data tool in the Tools menu to look around the stack and the
locals and globals for the selected stack frame.

• Select Debug Probe (Wing Pro only) from the Tools menu. This is an interactive
command prompt that lets you type expressions or even change values in the
context of the stack frame that is selected on the Debugger window when your
program is paused or stopped at an exception. It is a very powerful debugging
tool and also useful for writing new code in the context of the live runtime
environment.

• Notice also that when the debugger is active, typing in code that is on the stack
(such as in itemSelected) shows auto-completion in the editor and calltips and

How-Tos for GUI Development

52

documentation in the Source Assistant tool that is sourced from the live runtime
state of your application.

See the Wing IDE Tutorial and Quick start for more information.

Test Driving the Source Browser

Don't forget to check out Wing's powerful source browser:

• Add package Lib/site-packages or site-packages (inside your Python
installation) to your project with the Add Directory item in the Project menu. On
OS X this is located inside your Python.framework/Versions/#.#/lib/python#.#
directory.

• Next bring up the Source Browser from the Tools menu. You can select the
view style at the top of the window, to browse by modules, by classes, or only the
current file. The Options menu on the right will filter what types of symbols are
being displayed in the browser.

• Double clicking on the browser will show the corresponding source code in the
source editor area.

• Use the right-click menu on the Source Browser to zoom to base classes. In
general, right-clicking will bring up menus specific to the tool being clicked on.

• Related to the Source Browser is the auto-completion capability in Wing's source
editor. Try typing in one of the PyQt source files and you will see the
auto-completer appear. Tab completes the currently selected item, but you can
set the Completion Keys preference to also complete when the Enter key is
pressed. See the Wing IDE Quickstart Guide for information on this and other
commonly used preferences.

• See also the Source Assistant tool in the Tools menu. This provides additional
information about source constructs in the active source editor as the insertion
cursor or selection is moved around. Note that this tool is also integrated with the
source browser, and with the auto-completer in the editor, Python Shell, and
Debug Probe (in Wing Pro).

Using a GUI Builder

Wing IDE doesn't currently include a GUI builder for PyQt but it can be used with an
external GUI builder. Wing will automatically reload files that are written by the GUI
builder, making for a fairly seamless integration.

A Caveat: Because Python lends itself so well to writing data-driven code, you may
want to reconsider using a GUI builder for some tasks. In many cases, Python's
introspection features make it possible to write generic GUI code that you can use to

How-Tos for GUI Development

53

http://wingware.com/doc/intro/tutorial
http://wingware.com/doc/howtos/quickstart
http://wingware.com/doc/howtos/quickstart

build user interfaces on the fly based on models of your data and your application.
This can be much more efficient than using a GUI builder to craft individual menus
and dialogs by hand. In general model-driven GUIs also tend to be more maintainable,
and the Qt widget set was designed specifically to make hand-coding easy.

Related Documents

Wing IDE provides many other options and tools. For more information:

• Wing IDE Reference Manual, which describes Wing IDE in detail.
• PyQt home page, which provides links to documentation and downloads.
• Wing IDE Quickstart Guide which contains additional basic information about

getting started with Wing IDE.

3.3. Using Wing IDE with GTK and PyGObject
Wing IDE is an integrated development environment that can be used to edit, test, and
debug Python code that is written for GTK using PyGObject. Wing provides
auto-completion, call tips, a powerful debugger, and many other features that help you
write, navigate, and understand Python code.

For more information on Wing IDE see the product overview. If you do not already
have Wing IDE installed, download a free trial now.

To get started using Wing, refer to the tutorial in the Help menu in Wing and/or the
Wing IDE Quickstart Guide.

Auto-Completion

PyGObject uses lazy (on-demand) loading of functionality to speed up startup of
applications that are based on it. This prevents Wing's analysis engine from inspecting
PyGObject-wrapped APIs and thus the IDE fails to offer auto-completion.

To work around this, use Fakegir, which is a tool to build a fake Python package of
PyGObject modules that can be placed onto the Python Path defined in Wing's
Project Properties.

Fakegir's README.md provides usage details.

Since Wing uses the configured Python Path not just for the editor but also when
debugging or executing code, it is necessary to remove the fake module directory
from sys.path, if present, before importing any PyGObject-provided modules:

import sys, os
kFakegirCache = os.path.join(os.path.expanduser('~'), '.cache/fakegir/')

How-Tos for GUI Development

54

http://wingware.com/doc/manual
http://www.riverbankcomputing.co.uk/software/pyqt/
http://wingware.com/doc/howtos/quickstart
http://wingware.com
http://www.gtk.org/
http://live.gnome.org/PyGObject
http://wingware.com
http://wingware.com/wingide/trial
http://wingware.com/doc/howtos/quickstart
https://github.com/strycore/fakegir

if kFakegirCache in sys.path:
 sys.path.remove(kFakegirCache)

Once this is done Wing should offer auto-completion for all PyGObject-provided
modules and should be able to execute and debug your code without disruption.

Related Documents

Wing IDE provides many other options and tools. For more information:

• Wing IDE Reference Manual, which describes Wing IDE in detail.
• Wing IDE Quickstart Guide which contains additional basic information about

getting started with Wing IDE.

3.4. Using Wing IDE with PyGTK
Wing IDE is an integrated development environment that can be used to edit, test, and
debug Python code that is written for PyGTK and GTK+, a mature open source GUI
development toolkit. Wing provides auto-completion, call tips, a powerful debugger,
and many other features that help you write, navigate, and understand Python code.

For more information on Wing IDE see the product overview. If you do not already
have Wing IDE installed, download a free trial now.

To get started using Wing, refer to the tutorial in the Help menu in Wing and/or the
Wing IDE Quickstart Guide.

Introduction

PyGTK is currently available for Linux/Unix, MS Windows, and Mac OS X (requires
X11 Server). Like PyQt and unlike wxPython, PyGTK runs on the same
(GTK-provided) widget implementations on all platforms. Themes can be used to
approximate the look and behavior of widgets on the native OS. It is also possible to
display native dialogs like the Windows file and print dialogs along side GTK windows.
While PyGTK does not offer perfect native look and feel, its provides excellent
write-once-works-anywhere capability even in very complex GUIs. Wing IDE is itself
written using PyGTK.

Other advantages of PyGTK include: (1) high quality anti-aliased text rendering, (2)
powerful signal-based architecture that, among other things, allows subclassing C
classes in Python, (3) multi-font text widget with embeddable sub-widgets, (4)
model-view architecture for list and tree widgets, and (5) a rich collection of widgets
and stock icons.

How-Tos for GUI Development

55

http://wingware.com/doc/manual
http://wingware.com/doc/howtos/quickstart
http://wingware.com/wingide
http://www.pygtk.org/
http://www.gtk.org/
http://wingware.com/products
http://wingware.com/wingide/trial
http://wingware.com/doc/howtos/quickstart
http://wingware.com/doc/howtos/pyqt
http://wingware.com/doc/howtos/wxpython

While Wing IDE does not currently provide a GUI builder for PyGTK, it does provide
the most advanced capabilities available for the Python programming language and it
can be used with other available GUI builders, as described below.

Installation and Configuration

Take the following steps to set up and configure Wing IDE for use with PyGTK:

• Install Python and Wing. See the generic Wing IDE Quickstart Guide for
installation instructions.

• Install GTK and PyGTK. If you are on Linux, you may already have one or both
installed, or you may be able to install them using your distribution's package
manager. Otherwise, check out the gtk website and pygtk website.

• Start Wing from the Start menu on Windows, the Finder or OS X, or by typing
wing5.1 on the command line on Linux other Posix systems. Once Wing has
started, you may want to switch to reading this How-To from the Help menu. This
will add links to the functionality of the application.

• Select Show Python Environment from the Source menu and if the Python
version reported there doesn't match the one you're using with PyGTK, then
select Project Properties from the Project menu and use the
Python Executable field to select the correct Python version.

• Add some files to your project, and set the main entry point with Set
Main Debug File in the Debug menu.

• Save your project to disk. Use a name ending in .wpr.
• You should now be able to debug your PyGTK application from within Wing. If

you see ImportErrors on the PyGTK modules, you will need to add Python Path
in the Debug tab of Project Properties, accessed from the Project menu.

Auto-completion and Source Assistant

To obtain auto-completion options and call signature information in Wing IDE Pro's
Source Assistant, you may need to run a script that converts from PyGTK's defs files
into Python interface files that Wing's source analyser can read. This is only
necessary if you are working with PyGTK significantly different than version 2.7.4,
because Wing ships with pre-built interface information for PyGTK 2.7.4. If you do
need to build interface files, do so as follows:

• Download the pygtk_to_pi.py script and the PyGTK sources for your version of
PyGTK if you don't already have them.

• Run as described within the script to produce a *.pi file for each *.so or *.pyd file
in the PyGTK sources.

How-Tos for GUI Development

56

http://wingware.com/doc/howtos/quickstart
http://www.gtk.org/
http://www.pygtk.org/
http://wingware.com/pub/wingide/contrib/pygtk_to_pi.py
http://pygtk.org/downloads.html

• Copy these *.pi files into the installed copy of PyGTK, so they sit next to the
compiled *.so or *.pyd extension module file that they describe.

• Wing should now provide auto-completion and (in Wing IDE Pro) Source
Assistant information when you import gtk and type gtk. in the editor.

With newer PyGTK versions, it may be necessary to make modifications to the
pygtk_to_pi.py script to track changes in the nature of the source base.

Using a GUI Builder

Wing IDE doesn't currently include a GUI builder for PyGTK but it can be used with
other tools, such as glade.

To use an external GUI builder, configure Wing to automatically reload files that
are altered by the GUI builder. This is done in Preferences in the Files / Reloading
area.

Then you can run Wing IDE and your GUI builder at the same time, working with both
in an almost seamless manner.

A Caveat: Because Python lends itself so well to writing data-driven code, you may
want to reconsider using a GUI builder for some tasks. In many cases, Python's
introspection features make it possible to write generic GUI code that you can use to
build user interfaces on the fly based on models of your data and your application.
This can be much more efficient than using a GUI builder to craft individual menus
and dialogs by hand. In general hand-coded GUIs also tend to be more maintainable.

Details and Notes

• Building GTK from sources can be a challenge. Wingware has developed some
build support scripts which we can provide on request. We also have patches that
allow GTK to be relocated after building on Linux/Unix.

• Native look and feel on Windows is provided by the gtk-wimp theme. If you plan to
deploy on Windows, you may wish to contact us to obtain our latest performance
patches for GTK on Windows.

Unfortunately not all of our patches have been merged into the current GTK sources,
although we have contributed patches in all cases so they can be retrieved from the
source forge bug tracker as well.

Related Documents

Wing IDE provides many other options and tools. For more information:

• Wing IDE Reference Manual, which describes Wing IDE in detail.

How-Tos for GUI Development

57

http://glade.gnome.org/
http://gtk-wimp.sourceforge.net/
http://wingware.com/doc/manual

• Wing IDE Quickstart Guide which contains additional basic information about
getting started with Wing IDE.

3.5. Using Wing IDE with matplotlib
Wing IDE is an integrated development environment that can be used to speed up the
process of writing and debugging Python code that is written for matplotlib, a powerful
2D plotting library. Wing provides auto-completion, call tips, a powerful debugger, and
many other features that help you write, navigate, and understand Python code.

For more information on Wing IDE see the product overview. If you do not already
have Wing IDE installed, download a free trial now.

Note: This document contains only matplotlib specific tips; please refer to the tutorial
in the Help menu in Wing and/or the Wing IDE Quickstart Guide.

Working in the Python Shell

Users of matplotlib often work interactively in the Python command line shell. For
example, two plots could be shown in succession as follows:

from pylab import plot,show,close
x = range(10)
plot(x)
show()
y = [2, 8, 3, 9, 4]
plot(y)
close()

In some environments, the show() call above will block until the plot window is closed.
By default Wing IDE modifies the matplotlib event loop in such a way that the show()
call will not block when entered in the integrated Python Shell, and the plot window will
be updated continuously as additional commands are typed. In fact show() is not
needed at all here since Wing automatically shows and updates plots once plot() is
called (but calling it is not a problem, and often will happen if you evaluate code from a
source file in the Python Shell). This allows for easier interactive testing of new code
and plots.

Code from the editor can be executed in the Python Shell using the Evaluate
File in Python Shell item in the Source menu or with the Evaluate
Selection in Python Shell item in the editor context menu (right click). By default the
Python Shell restarts before evaluating a whole file; this can be disabled in the Python
Shell's Options menu.

How-Tos for GUI Development

58

http://wingware.com/doc/howtos/quickstart
http://wingware.com/wingide/
http://matplotlib.sourceforge.net/
http://wingware.com/products
http://wingware.com/wingide/trial
http://wingware.com/doc/howtos/quickstart

This special event loop support has been implemented for the TkAgg, GTKAgg,
WXAgg (for wxPython 2.5+), Qt4Agg, and MacOS backends. It will not work with
other backends.

Working in the Debugger

When executing code that includes show() in the debugger, Wing will block within the
show() call just as Python would outside of the debugger if launched on the same file.
This is by design, since the debugger seeks to replicate Python run non-interactively.

To work interactively with matplotlib code launched in the debugger, you can set a
breakpoint on show() in the code and then work in the Debug Probe. Wing adds an
item Evaluate Selection in Debug Probe to the editor context menu (right click)
when the debugger is active.

Trouble-shooting

If show() blocks when typed in the Python Shell or Debug Probe, if plots fail to
update, or if you run into other event loop problems working with matplotlib you can:

(1) Try the following as a way to switch to another backend before issuing any other
commands:

import matplotlib
matplotlib.use('TkAgg')

(2) Try disabling the matplotlib support entirely in Project Properties under the
Extensions tab and then restart the Python Shell from its Options menu and restart
your debug process, if any. However, this prevents interactive use of matplotlib in the
Python Shell and Debug Probe.

Please email support@wingware.com if you cannot resolve problems without
disabling Wing's matplotlib support.

Related Documents

Wing IDE provides many other options and tools. For more information:

• Wing IDE Reference Manual, which describes Wing IDE in detail.
• The matplotlib home page, which provides links to documentation.
• Wing IDE Quickstart Guide which contains additional basic information about

getting started with Wing IDE.

How-Tos for GUI Development

59

mailto:support@wingware.com
http://wingware.com/doc/manual
http://matplotlib.sourceforge.net/
http://wingware.com/doc/howtos/quickstart

How-Tos for Modeling, Rendering, and Compositing
Systems
The following How-Tos provide tips and short cuts for using a number of modeling,
rendering, and compositing systems with Wing IDE.

4.1. Using Wing IDE with Blender
Wing IDE is an integrated development environment that can be used to develop, test,
and debug Python code written for Blender, an open source 3D content creation
system. Wing provides auto-completion, call tips, a powerful debugger, and many
other features that help you write, navigate, and understand Python code.

For more information on Wing IDE see the product overview. If you do not already
have Wing IDE installed, download a free trial now.

To get started using Wing, refer to the tutorial in the Help menu in Wing and/or the
Wing IDE Quickstart Guide.

Introduction

Blender's loads Python scripts in a way that makes them difficult to debug in a Python
debugger. The following stub file can be used to work around these problems:

import os
import sys

MODIFY THESE:
winghome = r'c:\Program Files\Wing IDE 2.1'
scriptfile = r'c:\src\test\blender.py'

os.environ['WINGHOME'] = winghome
if winghome not in sys.path:
 sys.path.append(winghome)
#os.environ['WINGDB_LOGFILE'] = r'c:\src\blender-debug.log'
import wingdbstub
wingdbstub.debugger.StartDebug()

def runfile(filename):
 execfile(filename)
runfile(scriptfile)

To use this script:

1. Modify winghome & scriptfile definitions where indicated to the wing installation
directory and the script you want to debug, respectively. When in doubt, the

How-Tos for Modeling, Rendering, and Compositing Systems

60

http://wingware.com/wingide/
http://www.blender.org/
http://wingware.com/products
http://wingware.com/wingide/trial
http://wingware.com/doc/howtos/quickstart

location to use for winghome is given as the Install Directory in your Wing IDE
About box (accessed from Help menu).

2. Run blender
3. Click on upper left icon and select text editor
4. Click on icon to right of "File" to display text editor pane
5. Select File -> Open from the bottom menu bar and select this file to open

Once the above is done you can debug your script by executing this blenderstub file in
blender. This is done using File -> Run Python Script from the bottom menu or by the
Alt-P key, though Alt-P seems to be sensitive to how the focus is set.

Note that you will need to turn on listening for externally initiated debug connections in
Wing, which is most easily done by clicking on the bug icon in the lower left of the
main window and selecting Accept Debug Connections in the popup menu that
appears.

Related Documents

Wing IDE provides many other options and tools. For more information:

• Wing IDE Reference Manual, which describes Wing IDE in detail.
• Blender home page, which provides links to documentation.
• Wing IDE Quickstart Guide which contains additional basic information about

getting started with Wing IDE.

4.2. Using Wing IDE with Autodesk Maya
Wing IDE is an integrated development environment that can be used to develop, test,
and debug Python code written for Autodesk Maya, a commercial 3D modeling
application. Wing provides auto-completion, call tips, a powerful debugger, and many
other features that help you write, navigate, and understand Python code.

For more information on Wing IDE see the product overview. If you do not already
have Wing IDE installed, download a free trial now.

To get started using Wing, refer to the tutorial in the Help menu in Wing and/or the
Wing IDE Quickstart Guide.

Debugging Setup

When debugging Python code running under Maya, the debug process is initiated
from outside of Wing IDE, and must connect to the IDE. This is done with wingdbstub
according to the instructions in the Debugging Externally Launched Code section of
the manual.

How-Tos for Modeling, Rendering, and Compositing Systems

61

http://wingware.com/doc/manual
http://www.blender.org/
http://wingware.com/doc/howtos/quickstart
http://wingware.com/wingide
http://usa.autodesk.com/maya/
http://wingware.com/products
http://wingware.com/wingide/trial
http://wingware.com/doc/howtos/quickstart
http://wingware.com/doc/debug/debugging-externally-launched-code

Because of how Maya sets up the interpreter, be sure to set kEmbedded=1 in your
copy of wingdbstub.py and use the debugger API to ensure the debugger is
connected to the IDE before any other code executes as follows:

import wingdbstub
wingdbstub.Ensure()

Then click on the bug icon in lower left of Wing's window and make sure that
Accept Debug Connections is checked. After that, you should be able to reach
breakpoints by causing the scripts to be invoked from Maya.

To use the mayapy executable found in the Maya application directory to run Wing's
Python Shell tool and to debug standalone Python scripts, enter the full path of the
mayapy file (mayapy.exe on Windows) in the Python Executable field of the
Project Properties dialog.

Better Static Auto-completion

Maya's Python support scripts do not come with source code, but rather only with pyc
files. Because Wing cannot statically analyze those files, it will fail to offer
auto-completion for them unless .pi files are used. A set of .pi files generated by the
PyMEL project can be found in Maya 2011 or in the PyMEL distribution.

• Maya 2011 ships with .pi files in the devkit/pymel/extras/completion/pi
subdirectory of the Maya 2011 install directory.

• For other Maya versions, .pi files from the PyMEL distribution at
http://code.google.com/p/pymel/ may be used. PyMEL does not need to be
installed or used to make use of the .pi files; it's enough to simply unpack the
source distribution. The pi directory within the PyMEL 1.0.2 distribution is
extras/completion/pi

Add the pi directory to the list of interface file directories that Wing uses by adding it to
the Interface File Path preference in the Source Analysis -> Advanced preference
page. After adding the directory to the path, Wing will offer auto-completion if you
import xxx and then type xxx.

Additional Information

Some additional information about using Wing IDE with Maya can be found in For
Python: Maya 'Script Editor' Style IDE. This includes extension scripts for more closely
integrating Wing Pro and Maya and some additional details. For example, sending
Python and MEL code to Maya from Wing is explained here

How-Tos for Modeling, Rendering, and Compositing Systems

62

http://code.google.com/p/pymel/
http://code.google.com/p/pymel/
http://mayamel.tiddlyspot.com/#[[For%20Python%3A%20Maya%20%27Script%20Editor%27%20style%20IDE]]%20[[How%20can%20I%20have%20Wing%20send%20Python%20or%20mel%20code%20to%20Maya%3F]]%20[[Remote%20Python%20debugging%20in%20Wing]]%20Welcome%20Blog
http://mayamel.tiddlyspot.com/#[[For%20Python%3A%20Maya%20%27Script%20Editor%27%20style%20IDE]]%20[[How%20can%20I%20have%20Wing%20send%20Python%20or%20mel%20code%20to%20Maya%3F]]%20[[Remote%20Python%20debugging%20in%20Wing]]%20Welcome%20Blog
http://mayamel.tiddlyspot.com/#[[How%20can%20I%20have%20Wing%20send%20Python%20or%20mel%20code%20to%20Maya%3F]]

See also the section Using Wing IDE with Maya in Autodesk Maya Online Help: Tips
and tricks for scripters new to Python.

Related Documents

Wing IDE provides many other options and tools. For more information:

• Wing IDE Reference Manual, which describes Wing IDE in detail.
• Wing IDE Quickstart Guide which contains additional basic information about

getting started with Wing IDE.

4.3. Using Wing IDE with NUKE and NUKEX
Wing IDE is an integrated development environment that can be used to write, test,
and debug Python code that is written for The Foundry's NUKE and NUKEX digital
compositing tool. Wing provides auto-completion, call tips, a powerful debugger, and
many other features that help you write, navigate, and understand Python code.

For more information on Wing IDE see the product overview. If you do not already
have Wing IDE installed, download a free trial now.

To get started using Wing, refer to the tutorial in the Help menu in Wing and/or the
Wing IDE Quickstart Guide.

Project Configuration

First, launch Wing IDE and create a new project from the Project menu and save it to
disk. Files can be added to the project with the Project menu. This is not a
requirement for working with NUKE but recommended so that Wing IDE's source
analysis, search, and revision control features know which files are part of the project.

Next, make sure Wing IDE is using NUKE's Python installation, or a Python that
matches NUKE's Python version.

Configuring for Licensed NUKE/NUKEX

If you have NUKE or NUKEX licensed and are not using the Personal Learning
Edition, then you can create a script to run NUKE's Python in terminal mode and use
that as the Python Executable in Wing's Project Properties. For example on OS X
create a script like this:

#!/bin/sh
/Applications/Nuke6.3v8/Nuke6.3v8.app/Nuke6.3v8 -t -i "$@"

How-Tos for Modeling, Rendering, and Compositing Systems

63

http://download.autodesk.com/us/maya/2010help/index.html?url=WS73099cc142f48755f2fc9df120970276f7-2158.htm,topicNumber=d0e183276
http://download.autodesk.com/us/maya/2010help/index.html?url=WS73099cc142f48755f2fc9df120970276f7-2158.htm,topicNumber=d0e183276
http://wingware.com/doc/manual
http://wingware.com/doc/howtos/quickstart
http://wingware.com/
http://www.thefoundry.co.uk/products/nuke/
http://wingware.com/products
http://wingware.com/wingide/trial
http://wingware.com/doc/howtos/quickstart

Then perform chmod +x on this script to make it executable. On Windows, you can
create a batch file like this:

@echo off
"c:\Program Files\Nuke7.0v9\Nuke7.0.exe" -t -i %*

Next, you will make the following changes in Project Properties, from the Project
menu in Wing:

• Set Python Executable to point to this script
• Change Python Options under the Debug tab to Custom with a blank entry area

(no options instead of -u)

Apply these changes and Wing will use NUKE's Python in its Python Shell (after
restarting from its Options menu), for debugging, and for source analysis.

Configuring for Personal Learning Edition of NUKE

The above will not work in the Personal Learning Edition of NUKE because it does not
support terminal mode. In that case, install a Python version that matches NUKE's
Python and use that instead. You can determine the correct version to use by by
looking at sys.version in NUKE's Script Editor. Then point Wing to that Python with
Python Executable in Project Properties. Using a matching Python version is a
good idea to avoid confusion caused by differences in Python versions, but is not
critical for Wing to function. However, Wing must be able to find some Python version
or many of its features will be disabled.

Additional Project Configuration

When using Personal Learning Edition, and possibly in other cases, some additional
configuration is needed to obtain auto-completion on the NUKE API also when the
debugger is not connected or not paused. The API is located inside the NUKE
installation, in the plugins directory. The plugins directory (parent directory of the
nuke package directory) should be added to the Python Path configured in Wing's
Project Properties (as accessed from the Project menu). On OS X this directory is
within the NUKE application bundle, for example
/Applications/Nuke6.3v8/Nuke6.3v8.app/Contents/MacOS/plugins.

Replacing the NUKE Script Editor with Wing IDE Pro

Wing IDE Pro can be used as a full-featured Python IDE to replace NUKE's Script
Editor component. This is done by downloading and configuring NukeExternalControl.

How-Tos for Modeling, Rendering, and Compositing Systems

64

https://github.com/Nvizible/NukeExternalControl

First set up and test the client/server connection as described in the documentation for
NukeExternalControl. Once this works, create a Python source file that contains the
necessary client-side setup code and save this to disk.

Next, set a breakpoint in the code after the NUKE connection has been made, by
clicking on the breakpoint margin on the left in Wing's editor or by clicking on the line
and using Add Breakpoint in the Debug menu or the breakpoint icon in the toolbar.

Then debug the file in Wing IDE Pro by pressing the green run icon in the toolbar or
with Start/Continue in the Debug menu. After reaching the breakpoint, use the
Debug Probe in Wing to work interactively in that context.

You can also work on a source file in Wing's editor and evaluate selections within the
file in the Debug Probe, by right-clicking on the editor.

Both the Debug Probe and Wing's editor should offer auto-completion on the NUKE
API, at least while the debugger is active and paused in code that is being edited. The
Source Assistant in Wing IDE Pro provides additional information for symbols in the
auto-completer, editor, and other tools in Wing.

This technique will not work in Wing IDE Personal because it lacks the Debug Probe
feature. However, debugging is still possible using the alternate method described in
the next section.

Debugging Python Running Under NUKE

Another way to work with Wing IDE and NUKE is to connect Wing IDE directly to the
Python instance running under NUKE. In order to do this, you need to import a special
module in your code, as follows:

import wingdbstub

You will need to copy wingdbstub.py out of the install directory listed in Wing's
About box and may need to set WINGHOME inside wingdbstub.py to the location
where Wing IDE is installed if this value is not already set by the Wing IDE installer.
On OS X, WINGHOME should be set to the full path of Wing's .app folder.

Before debugging will work within NUKE, you must also set the kEmbedded flag
inside wingdbstub.py to 1.

Next click on the bug icon in the lower left of Wing IDE's main window and make sure
that Accept Debug Connections is checked.

Then execute the code that imports the debugger. For example, right click on one of
NUKE's tool tabs and select Script Editor. Then in the bottom panel of the Script
Editor enter import wingstub and press the Run button in NUKE's Script Editor tool

How-Tos for Modeling, Rendering, and Compositing Systems

65

area. You should see the bug icon in the lower left of Wing IDE's window turn green,
indicating that the debugger is connected.

If the import fails to find the module, you may need to add to the Python Path as
follows:

import sys
sys.path.append("/path/to/wingdbstub")
import wingdbstub

After that, breakpoints set in Python modules should be reached and Wing IDE's
debugger can be used to inspect, step through code, and try out new code in the live
runtime. Breakpoints set in the script itself won't be hit, though, due to how Nuke loads
the script so code to be debugged should be put in modules that are imported.

For example, place the following code in a module named testnuke.py that is located
in the same directory as wingdbstub.py or anywhere on the sys.path used by
NUKE:

def wingtest():
 import nuke
 nuke.createNode('Blur')

Then set a breakpoint on the line import nuke by clicking in the breakpoint margin to
the left, in Wing's editor.

Next enter the following and press the Run button in NUKE's Script Editor (just as you
did when importing wingdbstub above):

import testnuke
testnuke.wingtest()

As soon as the second line is executed, Wing should reach the breakpoint. Then try
looking around with the Stack Data and Debug Probe (in Wing Pro only).

Debugger Configuration Detail

If the debugger import is placed into a script file, you may also want to call Ensure on
the debugger, which will make sure that the debugger is active and connected:

import wingdbstub
wingdbstub.Ensure()

This way it will work even after the Stop icon has been pressed in Wing, or if Wing is
restarted or the debugger connection is lost for any other reason.

How-Tos for Modeling, Rendering, and Compositing Systems

66

For additional details on configuring the debugger see Debugging Externally
Launched Code.

Limitations and Notes

When Wing's debugger is connected directly to NUKE and at a breakpoint or
exception, NUKE's GUI will become unresponsive because NUKE scripts are run in a
way that prevents the main GUI loop from continuing while the script is paused by the
debugger. To regain access to the GUI, continue the paused script or disconnect from
the debug process with the Stop icon in Wing's toolbar.

NUKE will also not update its UI to reflect changes made when stepping through a
script or otherwise executing code line by line. For example, typing import
nuke; nuke.createNode('Blur') in the Debug Probe will cause creation of a node but
NUKE's GUI will not update until the script is continued.

When the NUKE debug process is connected to the IDE but not paused, setting a
breakpoint in Wing will display the breakpoint as a red line rather than a red dot during
the time where it has not yet been confirmed by the debugger. This can be any length
of time, if NUKE is not executing any Python code. Once Python code is executed, the
breakpoint should be confirmed and will be reached. This delay in confirming the
breakpoint does not occur if the breakpoint is set while the debug process is already
paused, or before the debug connection is made.

These problems should only occur when Wing IDE's debugger is attached directly to
NUKE, and can be avoided by working through NukeExternalControl instead, as
described in the first part of this document.

Related Documents

Wing IDE provides many other options and tools. For more information:

• Wing IDE Reference Manual, which describes Wing IDE in detail.
• NUKE/NUKEX home page, which provides links to documentation.
• Wing IDE Quickstart Guide which contains additional basic information about

getting started with Wing IDE.

4.4. Using Wing IDE with Source Filmmaker
Wing IDE is an integrated development environment that can be used to develop, test,
and debug Python code written for Source Filmmaker (SFM), a movie-making tool
built by Valve using the Source game engine. Wing provides auto-completion, call
tips, a powerful debugger, and many other features that help you write, navigate, and
understand Python code.

How-Tos for Modeling, Rendering, and Compositing Systems

67

http://wingware.com/doc/debug/debugging-externally-launched-code
http://wingware.com/doc/debug/debugging-externally-launched-code
http://wingware.com/doc/manual
http://www.thefoundry.co.uk/products/nuke/
http://wingware.com/doc/howtos/quickstart
http://wingware.com/wingide
http://www.sourcefilmmaker.com/

For more information on Wing IDE see the product overview. If you do not already
have Wing IDE installed, download a free trial now.

To get started using Wing, refer to the tutorial in the Help menu in Wing and/or the
Wing IDE Quickstart Guide.

Debugging Setup

Wing can debug Python code that's saved in a file, but not code entered in the Script
Editor window. As of version 0.9.8.5 (released May 2014), this includes scripts run
from the main menu. In all versions, code in imported modules may be debugged.

When debugging Python code running under SFM, the debug process is initiated from
outside of Wing IDE, and must connect to the IDE. This is done with wingdbstub, as
described in in the Debugging Externally Launched Code section of the manual.
Because of how SFM sets up the interpreter, you must set kEmbedded=1 in your
copy of wingdbstub.py.

As of May 2014, SFM comes with wingdbstub.py in the site-packages directory in its
Python installation. If an older version of SFM is being used or if Wing IDE is installed
into a nonstandard directory, copy wingdbstub.py from your Wing IDE install
directory to the site-packages directory. The default location of the site-packages
directory is:

<STEAM>\steamapps\common\SourceFilmmaker\game\sdktools\python\2.7\win32\Lib\site-packages

Before debugging, click on the bug icon in lower left of Wing's window and make sure
that Accept Debug Connections is checked. After that, you should be able to reach
breakpoints by causing the scripts to be invoked from SFM.

To start debugging and ensure there's a connection from the SFM script being
debugged to Wing, execute the following before any other code executes:

import wingdbstub
wingdbstub.Ensure()

To use the python executable found in the SFM application directory to run Wing's
Python Shell tool and to debug standalone Python scripts, enter the full path of the
python.exe file in the Python Executable field of the Project Properties dialog.

Related Documents

Wing IDE provides many other options and tools. For more information:

• Wing IDE Reference Manual, which describes Wing IDE in detail.

How-Tos for Modeling, Rendering, and Compositing Systems

68

http://wingware.com/products
http://wingware.com/wingide/trial
http://wingware.com/doc/howtos/quickstart
http://wingware.com/doc/debug/debugging-externally-launched-code
http://wingware.com/doc/manual

• Wing IDE Quickstart Guide which contains additional basic information about
getting started with Wing IDE.

• Wing IDE Tutorial which provides a tour of Wing IDE's feature set.

How-Tos for Other Libraries
The following How-Tos provide tips and short cuts for using a number of other popular
development frameworks with Wing IDE.

5.1. Using Wing IDE with virtualenv
Wing IDE is an integrated development environment that that speeds up the process
of writing, testing, and debugging Python code. Wing IDE supports virtualenv,
providing auto-completion, call tips, goto-definition, find uses, refactoring, a powerful
debugger, unit testing, and many other features that help you navigate, understand,
and write Python code.

For more information on Wing IDE see the product overview. If you do not already
have Wing IDE installed, download a free trial now.

Project Configuration

To use virtualenv with Wing, simply set the Python Executable in Wing's Project
Properties to the python executable provided by virtualenv. Wing uses this to
determine the environment to use for source analysis and how to execute, test, and
debug your code.

An alternative approach is to activate the virtualenv and then start Wing from the
command line so that it inherits the virtual environment. However, setting
Python Executable is preferable so that Wing switches virtual environments when
you switch projects without restarting the IDE.

Related Documents

Wing IDE provides many other options and tools. For more information:

• Wing IDE Reference Manual, which describes Wing IDE in detail.
• Wing IDE Tutorial
• Wing IDE Quickstart Guide

5.2. Using Wing IDE with Raspberry Pi

How-Tos for Other Libraries

69

http://wingware.com/doc/howtos/quickstart
http://wingware.com/doc/intro/tutorial
http://wingware.com/
http://www.virtualenv.org
http://wingware.com/products
http://wingware.com/wingide/trial
http://wingware.com/doc/manual
http://wingware.com/doc/intro/tutorial
http://wingware.com/doc/howtos/quickstart

Note

"Within a couple of minutes I could fence in and eliminate an error with
the handling of a GPRS modem attached to the Raspberry Pi that before I
was trying to hunt down for hours." -- Robert Rottermann, redCOR AG

Wing IDE is an integrated development environment that can be used to develop and
debug Python code running on the Raspberry Pi. Wing provides auto-completion, call
tips, a powerful debugger, and many other features that help you write, navigate, and
understand Python code.

For more information on Wing IDE see the product overview. If you do not already
have Wing IDE installed, download a free trial now.

To get started using Wing, refer to the tutorial in the Help menu in Wing and/or the
Wing IDE Quickstart Guide.

Introduction

The Raspberry Pi is not currently capable of running Wing IDE itself, but you can set
up Wing IDE on a computer connected to the Raspberry Pi to work on and debug
Python code remotely.

To do this, you will need (1) a network connection between the Raspberry Pi and the
computer where Wing IDE will be running, and (2) a way to share files from the
machine running Wing IDE and the Raspberry Pi.

The easiest way to connect the Raspberry Pi to your network is with ethernet, or see
the instructions at the end of this document for configuring a wifi connection.

For file sharing, use Samba, or simply transfer a copy of your files to the Raspberry Pi
using scp or rsync.

Installing and Configuring the Debugger

Once you have a network connection and some sort of file sharing set up, the next
step is to install and configure Wing IDE's debugger. This is done as follows:

• If you do not already have Wing IDE 5.1.5 or later installed, download a free trial
on Windows, Linux, or OS X.

• Download the Raspberry Pi debugger package to your Raspberry Pi and unpack
it with tar xzf wing-debugger-raspbian-5.1.6-1.tgz. This creates a directory
named wing-debugger-raspbian-5.1.6-1.

How-Tos for Other Libraries

70

http://redcor.ch/
http://wingware.com/wingide/
http://raspberrypi.org/
http://wingware.com/products
http://wingware.com/wingide/trial
http://wingware.com/doc/howtos/quickstart
http://wingware.com/wingide/trial
http://wingware.com/pub/wingide/5.1.6/wing-debugger-raspbian-5.1.6-1.tgz

• Launch Wing IDE and make sure that Accept Debug Connections is checked
when you click on the bug icon in the lower left of Wing's main window. Hovering
the mouse over the bug icon will show additional status information, including the
port Wing is listening on, which should be 50005 by default.

• Copy wingdebugpw from the machine where you have Wing IDE installed to the
Raspberry Pi and place it into the directory wing-debugger-raspbian-5.1.6-1.
This file is located in the Settings Directory, which is listed 5th in Wing's About
box.

• On the Raspberry Pi, use /sbin/ifconfig to determine the IP address of the
Raspberry Pi (not 127.0.0.1, but instead the number listed under eth0 or wlan0 if
you're using wifi).

• On the host where Wing IDE is running (not the Raspberry Pi), establish an ssh
reverse tunnel to the Raspberry Pi so the debugger can connect back to the IDE.
On Linux and OS X this is done as follows:

ssh -N -R 50005:localhost:50005 <user>@<rasp_ip>

You'll need to replace <user>@<rasp_ip> with the login name on the Raspberry
Pi and the ip address from the previous step.

The -f option can be added just after ssh to cause ssh to run in the background.
Without this option, you can use Ctrl-C to terminate the tunnel. With it, you'll need
to use ps and kill to manage the process.

On Windows, use PuTTY to configure an ssh tunnel using the same settings on
the Connections > SSH > Tunnels page: Set Source port to 50005,
Destination to localhost:50005, and select the Remote radio button, then press
the Add button. Once this is done the tunnel will be established whenever PuTTY
is connected to the Raspberry Pi.

How-Tos for Other Libraries

71

http://www.putty.org/

• In Wing IDE's Preferences, use the
Debugger > External/Remote > Location Map preference to set up a mapping
from the location of your files on the remote host (the Raspberry Pi) and the
machine where the IDE is running.

For example, if you have files in /home/pi/ on your Raspberry Pi that match those
in /Users/pitest/src/ on the machine where Wing is running, then you would add
those two to the location mapping for 127.0.0.1, with home/pi/ as the remote
directory and /Users/pitest/src/ as the local directory.

Don't add a location map for the Raspberry Pi's ip address because your ssh
tunnel makes

Invoking the Debugger

There are two ways to invoke the debugger: (1) from the command line, or (2) from
within your Python code. The latter is useful if debugging code running under a web
server or other environment not launched from the command line.

Debugging from the Command Line

To invoke the debugger without modifying any code, use the following command:

wing-debugger-raspbian-5.1.6-1/wingdb yourfile.py arg1 arg2

This is the same thing as python yourfile.py arg1 arg2 but runs your code in Wing's
debugger so you can stop at breakpoints and exceptions in the IDE, step through your
code, and interact using the Debug Probe in the Tools menu.

By default this runs with python and connects the debugger to localhost:50005,
which matches the above configuration. To change which Python is run, set the
environment variable WINGDB_PYTHON:

export WINGDB_PYTHON=/some/other/python

Use the Tutorial in Wing's Help menu to learn more about the features available in
Wing IDE.

Starting Debug from Python Code

To start debug from within Python code that is already running, edit
wing-debugger-raspbian-5.1.6-1/wingdbstub.py and change the line
WINGHOME = None to WINGHOME = /home/pi/wing-debugger-raspbian-5.1.6-1
where /home/pi should be replaced with the full path where you unpacked the
debugger package earlier. Use pwd to obtain the full path if you don't know what it is.

How-Tos for Other Libraries

72

http://wingware.com/doc/intro/tutorial

Copy your edited wingdbstub.py into the same directory as your code and add
import wingdbstub to your code. This new line is what initiates debugging and
connects back to the IDE through the ssh tunnel.

An alternative to editing wingdbstub.py is to set WINGHOME in the environment
instead with a command like
export WINGHOME=/home/pi/wing-debugger-raspbian-5.1.6-1.

Configuration Details

If for some reason you can't use port 50005 as the debug port on either machine, this
can be changed on the Raspberry Pi with kHostPort in wingdbstub.py or with the
WINGDB_HOSTPORT environment variable. To change the port the IDE is listening
on, use the Debugger > External/Remote > Server Port preference and or
Debug Server Port in Project Properties in Wing IDE.

If this is done, you will need to replace the port numbers in the ssh tunnel invocation in
the following form:

ssh -N -R <remote_port>:localhost:<ide_port> <user>@<rasp_ip>

The first port number is the port specified in kHostPort or with WINGDB_HOSTPORT
environment variable, and the second one is the port set in Wing IDE's preferences or
Project Properties.

On Windows using PuTTY, the Source port is the port set with kHostPort or
WINGDB_HOSTPORT on the Raspberry Pi, and the port in the Destination is the
port Wing is configured to listen on.

Refer to the documentation for ssh or PuTTY for details.

Trouble-Shooting

There are several ways in which a debug configuration can fail and when a connection
cannot be established to the IDE code will run without debug. Additional diagnostic
output is needed to find the cause of most problems. This is done by setting an extra
environment variable before initiating debug on the Raspberry Pi:

export WINGDB_LOGFILE=/home/pi/debug.log

Hovering the mouse over the bug icon in the lower left of Wing's window will show if a
debug connection is active. Wing also adds icons to the toolbar while debugging.

If Wing is not receiving a connection, check the reverse ssh tunnel, make sure that
wingdebugpw was copied, and check that Wing is listening for debug connections.

How-Tos for Other Libraries

73

If Wing is receiving a connection but breakpoints are not reached or source code is
not shown when reaching an exception, check your location map preference. A good
way to test this is to add a deliberate unhandled exception to your code (such as
assert 0) to see if Wing's debugger stops but fails to show the source code. The
location map must be correct for Wing to show the source code.

Setting up Wifi on a Raspberry Pi

It is possible to easily and cheaply connect a Raspberry Pi 2 to a wifi network. Here
are instructions for doing this using an Edimax EW-7811Un wifi USB card (although
other cards may also work) for a passphrase-protected wifi network:

• Plug in the USB wifi card and reboot your Raspberry Pi
• Edit /etc/network/interfaces and comment out the interface for wlan1. Nothing

works if this is not done.
• Edit /etc/wpa_supplicant/wpa_supplicant.conf and add the following to the end:

network={
ssid="<yourssid>"
scan_ssid=1
key_mgmt=WPA-PSK
psk="<yourpassphrase>"
}

Replace <yourssid> your wifi network name and <yourpassphrase> with your
wifi passphrase. Be sure to use exactly the above with no changes in spacing and
with the quotes for the ssid and passphrase but not for other things. Otherwise
nothing works and you won't get any usable error messages.

• Restart your Raspberry Pi again and wifi should work.

Related Documents

Wing IDE provides many other options and tools. For more information:

• Wing IDE Reference Manual, which describes Wing IDE in detail.
• Raspberry Pi home page, which provides links to documentation.
• Wing IDE Quickstart Guide which contains additional basic information about

getting started with Wing IDE.

How-Tos for Other Libraries

74

http://wingware.com/doc/manual
http://raspberrypi.org/
http://wingware.com/doc/howtos/quickstart

5.3. Using Wing IDE with Twisted
Wing IDE is an integrated development environment that can be used to write, test,
and debug Python code that is written for Twisted. Wing provides auto-completion,
call tips, a powerful debugger, and many other features that help you write, navigate,
and understand Python code.

For more information on Wing IDE see the product overview. If you do not already
have Wing IDE installed, download a free trial now.

To get started using Wing, refer to the tutorial in the Help menu in Wing and/or the
Wing IDE Quickstart Guide.

Installing Twisted

The Twisted website provides complete instructions for installing and using Twisted.

Debugging in Wing IDE

To debug Twisted code launched from within Wing IDE, create a file with the following
contents and set it as your main debug file by adding it to your project and then using
the Set Main Debug File item in the Debug menu:

from twisted.scripts.twistd import run
import os
try:
 os.unlink('twistd.pid')
except OSError:
 pass
run()

Then go into the File Properties for this file (by right clicking on it) and set
Run Arguments to something like:

-n -y name.tac

The -n option tells Twisted not to daemonize, which would cause the debugger to fail
because sub-processes are not automatically debugged. The -y option serves to point
Twisted at your .tac file (replace name.tac with the correct name of your file instead).

You can also launch Twisted code from outside of Wing using the module
wingdbstub.py that comes with Wing. This is described in Debugging Externally
Launched Code in the manual.

How-Tos for Other Libraries

75

http://wingware.com/wingide/
http://twistedmatrix.com/
http://wingware.com/products
http://wingware.com/wingide/trial
http://wingware.com/doc/howtos/quickstart
http://twistedmatrix.com/
http://wingware.com/doc/debug/debugging-externally-launched-code
http://wingware.com/doc/debug/debugging-externally-launched-code

Related Documents

Wing IDE provides many other options and tools. For more information:

• Wing IDE Reference Manual, which describes Wing IDE in detail.
• Twisted home page, which provides links to documentation.
• Wing IDE Quickstart Guide which contains additional basic information about

getting started with Wing IDE.

5.4. Using Wing IDE with Cygwin
Wing IDE is an integrated development environment that can be used to write, test,
and debug Python code that is written for cygwin, a Linux/Unix like environment for
Microsoft Windows. Wing provides auto-completion, call tips, a powerful debugger,
and many other features that help you write, navigate, and understand Python code.

For more information on Wing IDE see the product overview. If you do not already
have Wing IDE installed, download a free trial now.

To get started using Wing, refer to the tutorial in the Help menu in Wing and/or the
Wing IDE Quickstart Guide.

Configuration

To write and debug code running under cygwin, download and install Wing IDE for
Windows on your machine. There is no Wing IDE for cygwin specifically but you can
set up Wing IDE for Windows to work with Python code that is running under cygwin.

Cygwin has a different view of the file system than the paths used by Windows
applications. This causes problems when code is debugged since Wing cannot find
the files referenced by their cygwin name.

The solution to this problem is to treat Python running under cygwin as if it were
running on a separate system. This is done using Wing's external launch / remote
debugging support. In this model, you will always launch your Python code from
cygwin rather than from Wing's menus or toolbar.

When setting this up according to the instructions provided by the above link, use
cygwin paths when setting up WINGHOME in wingdbstub.py.

You will also need to set up a file location translation map from your cygwin names
(usually by default something like /c/path/to/files maps to C:\path\to\files), or set
things up in cygwin's configuration so that the cygwin pathname is equivalent to the
win32 pathname. For the latter, an example would be to set up /src in cygwin to point
to the same dir as \src in win32 (which is src at top level of the main drive, usually

How-Tos for Other Libraries

76

http://wingware.com/doc/manual
http://twistedmatrix.com/
http://wingware.com/doc/howtos/quickstart
http://wingware.com/wingide/
http://www.cygwin.com/
http://wingware.com/products
http://wingware.com/wingide/trial
http://wingware.com/doc/howtos/quickstart
http://wingware.com/doc/debug/debugging-externally-launched-code
http://wingware.com/doc/debug/debugging-externally-launched-code

c:\src). Wing will ignore the difference between forward and backward slashes in path
names. An easy way to determine the correct cygwin file path to use is to place
assert 0 into a file and refer to the traceback shown in the Exceptions tool in Wing
when the file is debugged via wingdbstub.

Related Documents

Wing IDE provides many other options and tools. For more information:

• Wing IDE Reference Manual, which describes Wing IDE in detail.
• Cygwin home page, which provides links to documentation.
• Wing IDE Quickstart Guide which contains additional basic information about

getting started with Wing IDE.

5.5. Using Wing IDE with pygame
Wing IDE is an integrated development environment that can be used to write, test,
and debug Python code that is written for pygame, an open source framework for
game development with Python.. Wing provides auto-completion, call tips, a powerful
debugger, and many other features that help you write, navigate, and understand
Python code.

For more information on Wing IDE see the product overview. If you do not already
have Wing IDE installed, download a free trial now.

This document contains only pygame-specific tips. To get started using Wing, refer to
the tutorial in the Help menu in Wing and/or the Wing IDE Quickstart Guide.

Debugging pygame

You should be able to debug pygame code with Wing just by starting debug from the
IDE. However, some versions of pygame running in full screen mode may not work
properly and may crash Wing. If that is the case, use window mode instead while
debugging.

This problem exists with other Python IDEs as well; we have not yet determined what
the cause is and it appears to have been fixed in newer pygame versions.

Related Documents

Wing IDE provides many other options and tools. For more information:

• Wing IDE Reference Manual, which describes Wing IDE in detail.
• Wing IDE Quickstart Guide which contains additional basic information about

getting started with Wing IDE.

How-Tos for Other Libraries

77

http://wingware.com/doc/manual
http://www.cygwin.com/
http://wingware.com/doc/howtos/quickstart
http://wingware.com/wingide
http://www.pygame.org/
http://wingware.com/products
http://wingware.com/wingide/trial
http://wingware.com/doc/howtos/quickstart
http://wingware.com/doc/manual
http://wingware.com/doc/howtos/quickstart

5.6. Using Wing IDE with scons
Wing IDE is an integrated development environment that can be used to edit, test, and
debug Python code that is written for scons, an open source software construction or
build control framework that uses Python. Wing provides auto-completion, call tips, a
powerful debugger, and many other features that help you write, navigate, and
understand Python code.

For more information on Wing IDE see the product overview. If you do not already
have Wing IDE installed, download a free trial now.

To get started using Wing, refer to the tutorial in the Help menu in Wing and/or the
Wing IDE Quickstart Guide.

Debugging scons

As of version 0.96.1 of scons, the way that scons executes build control scripts does
not work properly with any Python debugger because the scripts are executed in an
environment that effectively sets the wrong file name for the script. Wing will bring up
the wrong file on exceptions and will fail to stop on breakpoints.

The solution for this is to patch scons by replacing the exec _file_ call with one that
unsets the incorrect file name, so that Wing's debugger looks into the correctly set
co_filename in the code objects instead.

The code to replace is in engine/SCons/Script/SConscript.py (around line 239 in
scons version 0.96.1):

exec _file_ in stack[-1].globals

Here is the replacement code to use:

old_file = call_stack[-1].globals.pop('__file__', None)
try:
 exec _file_ in call_stack[-1].globals
finally:
 if old_file is not None:
 call_stack[-1].globals.update({__file__:old_file})

Once this is done, Wing should show the correct file on exceptions and stop on
breakpoints set within the IDE.

Note that if you launch scons from the command line (likely the preferred method)
rather than from within Wing IDE, you will need to use wingdbstub to initiate
debugging, as described in Debugging Externally Launched Code.

How-Tos for Other Libraries

78

http://wingware.com/wingide
http://www.scons.org/
http://wingware.com/products
http://wingware.com/wingide/trial
http://wingware.com/doc/howtos/quickstart
http://wingware.com/doc/debug/debugging-externally-launched-code

Related Documents

Wing IDE provides many other options and tools. For more information:

• Wing IDE Reference Manual, which describes Wing IDE in detail.
• Wing IDE Quickstart Guide which contains additional basic information about

getting started with Wing IDE.

5.7. Using Wing IDE with IDA Python
Wing IDE is an integrated development environment that can be used to write, test,
and debug Python code that is written for Hex-Rays IDA multi-processor disassembler
and debugger. Wing provides auto-completion, call tips, a powerful debugger, and
many other features that help you write, navigate, and understand Python code.

For more information on Wing IDE see the product overview. If you do not already
have Wing IDE installed, download a free trial now.

To get started using Wing, refer to the tutorial in the Help menu in Wing and/or the
Wing IDE Quickstart Guide.

Debugging IDA Python in Wing IDE

IDA embeds a Python interpreter that can be used to script the system. In order to
debug Python code that is run within IDA, you need to import a special module in your
code, as follows:

import wingdbstub
wingdbstub.Ensure()

You will need to copy wingdbstub.py out of your Wing IDE installation and may need
to set WINGHOME inside wingdbstub.py to the location where Wing IDE is installed
(on OS X, the name of Wing's .app folder) if this value is not already set. Even though
this is an embedded instance of Python, leave the kEmbedded flag set to 0.

Next click on the bug icon in the lower left of Wing IDE's main window and make sure
that Accept Debug Connections is checked. Then restart IDA and the debug
connection should be made as soon as the above code is executed, as indicated by
the color of the bug icon in Wing IDE.

At that point, any breakpoints set in Python code should be reached and Wing IDE
can be used to inspect the runtime state, step through code, and try out new code in
the live runtime.

For details see Debugging Externally Launched Code.

How-Tos for Other Libraries

79

http://wingware.com/doc/manual
http://wingware.com/doc/howtos/quickstart
http://wingware.com/
http://www.hex-rays.com/products/ida/index.shtml
http://wingware.com/products
http://wingware.com/wingide/trial
http://wingware.com/doc/howtos/quickstart
http://wingware.com/doc/debug/debugging-externally-launched-code

Related Documents

Wing IDE provides many other options and tools. For more information:

• Wing IDE Reference Manual, which describes Wing IDE in detail.
• Hex-Rays IDA home page, which provides links to documentation.
• Wing IDE Quickstart Guide which contains additional basic information about

getting started with Wing IDE.

Using Wing IDE with IronPython
Wing IDE is an integrated development environment that speeds up the process of
writing Python code with IronPython. Wing provides auto-completion, call tips,
goto-definition, find uses, refactoring, unit testing, and many other features that help
you navigate, understand, and write Python code.

For more information on Wing IDE see the product overview. If you do not already
have Wing IDE installed, download a free trial now.

Project Configuration
For more information on setting up Wing IDE with IronPython, see IronPython and the
Wing IDE: Using the Wing Python IDE with IronPython. This article provides a script to
help with setting up auto-completion for the .NET framework, and some information on
how to get Wing to execute your code in IronPython. It was written by Michael Foord,
co-author of the book IronPython in Action.

The script the article refers to is now shipped with Wing; it's the
src/wingutils/generate_pi.py file in the Wing IDE install directory.

Related Documents
Wing IDE provides many other options and tools. For more information:

• Wing IDE Reference Manual, which describes Wing IDE in detail.
• IronPython home page, which provides links to documentation.
• Wing IDE Tutorial
• Wing IDE Quickstart Guide which contains additional basic information about

getting started with Wing IDE.

6.1. Handling Large Values and Strings in the Debugger
To avoid hanging up on large values during stepping and other debugger actions, the
debugger limits the size of constructs that it will display.

Using Wing IDE with IronPython

80

http://wingware.com/doc/manual
http://www.hex-rays.com/products/ida/index.shtml
http://wingware.com/doc/howtos/quickstart
http://wingware.com/
http://www.codeplex.com/Wiki/View.aspx?ProjectName=IronPython
http://wingware.com/products
http://wingware.com/wingide/trial
http://www.voidspace.org.uk/ironpython/wing-how-to.shtml
http://www.voidspace.org.uk/ironpython/wing-how-to.shtml
http://www.ironpythoninaction.com/
http://wingware.com/doc/manual
http://www.codeplex.com/Wiki/View.aspx?ProjectName=IronPython
http://wingware.com/doc/intro/tutorial
http://wingware.com/doc/howtos/quickstart

You can alter the size limit on large compound values with the Huge List Threshold
preference. If you do this, you may also need to increase the debugger's patience in
waiting for these large lists to transfer with the Network Timeout preference.

Long strings are also truncated by default when they are sent to the IDE from the
debug process. The maximum displayable length of strings is controlled with the
Huge String Threshold preference.

To view all of a truncated string, right click on them in the Stack Data tool and select
Show Detail from the popup that appears. Alternatively in Wing Professional you can
use the Debug Probe or Watch tools, accessible from the Tools menu. For example,
for a large array, you can enter a value like a[2:5][7] to arrive at a manageable value
size.

6.2. Debugging C/C++ and Python together
Wing's debugger is for Python code only and doesn't itself handle stepping into C or
C++. However, you can set up VC++ or the gdb debugger in conjunction with the
Wing IDE debugger to debug errors in either C or Python at the same time.

This can be done either by launching the debug process from Wing and attaching the
C/C++ debugger to it, or by launching the debug process with the C/C++ debugger
and then initiating debug in Wing by importing wingdbstub in your Python code. To
configure wingdbstub, see the manual section on Debugging Externally Launched
Code.

To debug the C/C++ code you need to be running with a copy of Python compiled
from sources with debug symbols.

See also this additional information on using gdb and Wing together. Using Wing and
VC++ is prone to fewer problems and doesn't currently have its own How-To.

6.3. Debugging Extension Modules on Linux/Unix
Gdb can be used as a tool to aid in debugging C/C++ extension modules written for
Python, while also running code in Wing's Python debugger.

This section assumes you are already familiar with gdb; for more information on gdb
commands, please refer to the gdb documentation.

Preparing Python

The first step in debugging C/C++ modules with gdb is to make sure that you are
using a version of Python that was compiled with debug symbols. To do this, you need
a source distribution of Python and you need to configure the distribution as described
in the accompanying README file.

Using Wing IDE with IronPython

81

http://wingware.com/doc/debug/debugging-externally-launched-code
http://wingware.com/doc/debug/debugging-externally-launched-code
http://wingware.com/doc/howtos/debugging-extension-modules-on-linux

In most cases, this can be done as follows: (1) Type ./configure, (2) type
make OPT=-g or edit the Makefile to add OPT=-g, and (3) type make. Once the build
is complete you can optionally install it with make install (see the README first if you
don't want to install into /usr/local/lib/python) but you can also run Python in place
without installing it.

When this is complete, compile your extension module against that version of Python.

Starting Debug

In order to run code both within Wing's Python debugger and gdb, launch your debug
process from Wing first, then note the process ID shown in the tooltip that appears
when you hover the mouse over the debug icon in the lower left of Wing's main
window.

Next, start gdb. First running emacs and then typing Esc-X gdb within emacs is one
way of doing this, and this makes it easier to set breakpoints and view code as you go
up and down the stack or step through it.

Within gdb, type attach <pid> where <pid> is replaced with the process ID reported
by Wing. This will pause the process as it attaches, which gives you a chance to set
breakpoints (in emacs you can do this with Ctrl-X Space while working in the editor).
When you're ready to continue the process, type c in gdb.

You are now debugging both at the Python and C/C++ level. You should be able to
pause, step, and view data in Wing whenever gdb is not paused. When gdb is
paused, Wing's debugger cannot be used until the process is continued at the gdb
level.

Tips and Tricks

(1) You may want to set up your ~/.gdbinit file by copying the contents of the file
Misc/gdbinit from the Python source distribution. This contains some useful macros
for inspecting Python code from gdb (for example pystack will print the Python stack,
pylocals will print the Python locals, and pyframe prints the current Python stack
frame)

(2) Note that breakpoints in a shared library cannot be set until after the shared library
is loaded. If running your program triggers loading of your extension module library,
you can use ^C^C to interrupt the debug program, set breakpoints, and then continue.
Otherwise, you must continue running your program until the extension module is
loaded. When in doubt, add a print statement at point of import, or you can set a
breakpoint at PyImport_AddModule (this can be set after file python and before
running since this call is not in a shared library).

Using Wing IDE with IronPython

82

(3) For viewing Python data from the C/C++ side when using gdb. The following gdb
command will print out the contents of a PyObject * called obj as if you had issued
the command print obj from within the Python language:

(gdb) p PyObject_Print (obj, stderr, 0)

For more information see Debugging with Gdb in the Python wiki.

(4) If you are launching code in a way that requires you to set LD_LIBRARY_PATH
and this is not working, check whether this value is set in .cshrc. This file is read each
time gdb runs so may overwrite your value. To work around this, set
LD_LIBRARY_PATH in .profile instead. This file is read only once at login time.

(5) Some older versions of gdb will get confused if you load and unload shared
libraries repeatedly during a single debug session. You can usually re-run Python 5-10
times but subsequently may see crashing, failure to stop at breakpoints, or other odd
behaviors. When this occurs, there is no alternative but to exit and restart gdb.

6.4. Debugging Code with XGrab* Calls
Under X11, Wing does not attempt to break XGrabPointer or XGrabKey and similar
resource grabs when your debug process pauses. This means that X may be
unresponsive to the keyboard or mouse or both in some debugging cases.

Here are some tips for working around this problem:

(1) Most Linux systems offer some way to break through X11 pointer and keyboard
grabs.

For example, X.org installations define a key symbol that releases all pointer and
keyboard grabs. You can map a key sequence to it with xdotool as in the following
example:

xdotool ctrl+alt+n XF86Ungrab

(2) Some toolkits have an option to disable resource grabs specifically to avoid this
problem during debugging. For example, PyQt has a command line option -nograb
that prevents it from ever grabbing the keyboard or pointer. Adding this to the debug
process command line solves the problem.

When this option is not available, another option is to move processing into a timer or
idle task so it occurs after the grab has been released.

(3) If all else fails, you can log in remotely, use ps to find the debug process, and kill it
with kill or kill -9 . This will unlock your X windows display.

Using Wing IDE with IronPython

83

http://wiki.python.org/moin/DebuggingWithGdb
http://www.semicomplete.com/projects/xdotool/

(4) Setting DISPLAY to send your debug process window to another X display avoids
tying up Wing in this way. The remote display will release its grabs once you kill the
debug process from the IDE.

6.5. Debugging Non-Python Mainloops
Because of the way the Python interpreter supports debugging, the debug process
may become unresponsive if your debug process is free-running for long periods of
time in non-Python code, such as C or C++. Whenever the Python interpreter is not
called for long periods of time, messages from Wing IDE may be entirely ignored and
the IDE may disconnect from the debug process. This primarily affects pausing a
free-running program or setting, deleting, or editing breakpoints while free-running.

Examples of environments that can spend significant amounts of time outside of the
Python interpreter include GUI kits such as Gtk, Qt, Tkinter, wxPython, and some web
development tools like Zope. For the purposes of this section, we call these
"non-Python mainloops".

Supported Non-Python Mainloops

Wing already supports Gtk, Tkinter, wxPython, and Zope. If you are using one of
these, or you aren't using a non-Python mainloop at all, then you do not need to read
further in this section.

Working with Non-Python Mainloops

If you are using an unsupported non-Python mainloop that normally doesn't call
Python code for longer periods of time, you can work around the problem by adding
code to your application that causes Python code to be called periodically.

The alternative to altering your code is to write special plug-in support for the Wing
debugger that causes the debug server sockets to be serviced even when your debug
program is free-running in non-Python code. The rest of this section describes what
you need to know in order to do this.

Non-Python Mainloop Internals

Wing uses a network connection between the debug server (the debug process) and
the debug client (Wing IDE) to control the debug process from the IDE and to inform
the IDE when events (such as reaching a breakpoint or exception) occur in the debug
process.

As long as the debug program is paused or stopped at a breakpoint or exception, the
debugger remains in control and it can respond to requests from the IDE. Once the
debug program is running, however, the debugger itself is only called as long as
Python code is being executed by the interpreter.

Using Wing IDE with IronPython

84

This is usually not a problem because most running Python program are executing a
lot of Python code. However, in a non-Python mainloop, the program may remain
entirely in C, C++, or another language and not call the Python interpreter at all for
long periods of time. As a result, the debugger does not get a chance to service
requests from the IDE. Pause or attach requests and new breakpoints may be
completely ignored in this case, and the IDE may detach from the debug process
because it is unresponsive.

Wing deals with this by installing its network sockets into each of the supported
non-Python mainloops, when they are detected as present in the debug program.
Once the sockets are registered, the non-Python mainloop will call back into Python
code whenever there are network requests pending.

Supporting Non-Python Mainloops

For those using an unsupported non-Python mainloop, Wing provides an API for
adding the hooks necessary to ensure that the debugger's network sockets are
serviced at all times.

If you wish to write support for a non-Python mainloop, you first need to check
whether there is any hope of registering the debugger's socket in that environment.
Any mainloop that already calls UNIX/BSD sockets select() and is designed for
extensible socket registration will work and is easy to support. Gtk and Zope both fell
into this category.

In other cases, it may be necessary to write your own select() call and to trick the
mainloop into calling that periodically. This is how the Tkinter and wxPython hooks
work. Some environments may additionally require writing some non-Python glue
code if the environment is not already set up to call back into Python code.

Mainloop hooks are written as separate modules that are placed into
src/debug/tserver within WINGHOME (the Wing IDE installation directory, or on OS
X Contents/Resources in Wing's .app folder). The module _extensions.py also
found there includes a generic class that defines the API functions required of each
module, and is the place where new modules must be registered (in the constant
kSupportedMainloops).

Writing Non-Python Mainloop Support

To add your own non-Python mainloop support, you need to:

1. Copy one of the source examples (such as _gtkhooks.py) found in
src/debug/server, as a framework for writing your hooks. Name your module
something like _xxxxhooks.py where xxxx is the name of your non-Python
mainloop environment.

Using Wing IDE with IronPython

85

2. Implement the _Setup(), RegisterSocket(), and UnregisterSocket() methods.
Do not alter any code from the examples except the code with in the methods.
The name of the classes and constants at the top level of the file must remain the
same.

3. Add the name of your module, minus the '.py' to the list kSupportedMainloops
in _extensions.py

Examples of existing support hooks for non-Python mainloops can be found in
src/debug/tserver within WINGHOME.

If you have difficulties writing your non-Python mainloop hooks, please contact
Technical Support via http://wingware.com/support. We will be happy to assist you,
and welcome the contribution of any hooks you may write.

6.6. Debugging Code Running Under Py2exe
Sometimes it is useful to debug Python code launched by an application produced by
py2exe -- for example, to solve a problem only seen when the code has been
packaged by``py2exe``, or so that users of the packaged application can debug
Python scripts that they write for the app.

When py2exe produces the *.exe, it strips out all but the modules it thinks will be
needed by the application and may miss any required by scripts added after the fact.
Also, py2exe runs in a slightly modified environment (for example the PYTHONPATH
environment is ignored). Both of these can cause problems for Wing's debugger, but
can be worked around with some modifications to the packaged code, as illustrated in
the following example:

Add extra environment needed by Wing's debugger
import sys
import os
extra = os.environ.get('EXTRA_PYTHONPATH')
if extra:
 sys.path.extend(extra.split(os.pathsep))
print(sys.path)

Start debugging
import wingdbstub

Just some test code
print("Hello from py2exe")
print("frozen", repr(getattr(sys, "frozen", None)))
print("sys.path", sys.path)
print("sys.executable", sys.executable)

Using Wing IDE with IronPython

86

http://wingware.com/support

print("sys.prefix", sys.prefix)
print("sys.argv", sys.argv)

You will need to set the following environment variables before launching the
packaged application:

EXTRA_PYTHONPATH=\Python25\Lib\site-packages\py2exe\samples\simple\dist;\Python25\lib;\Python25\dlls
WINGDB_EXITONFAILURE=1
WINGHOME=\Program Files\Wing IDE 4.1

To debug, an installation of Python matching the one used by py2exe must be
present and referenced by the EXTRA_PYTHONPATH environment variable. This
example assumes the installation of Python 2.5 at \Python25 was used by py2exe.

The directory \Python25\Lib\site-packages\py2exe\samples\simple\dist is where
wingdbstub.py was placed; this can be altered as desired. Also, WINGHOME should
be altered to match the location where Wing is installed and isn't needed at all if the
value set in wingdbstub.py is correct (which it usually will be if copied out of the Wing
installation).

When trying this out, be sure to Accept Debug Connections in Wing IDE by clicking
on the bug icon in the lower left of the main window. For more information on using
wingdbstub to debug, see Debugging Externally Launched Code

Enabling End Users to Debug

The above example is geared at the primary developers trying to find bugs in
packaged code. If the packaged application is one that allows the end user to write
add-on scripts and they want to debug these in Wing's debugger, then the
import wingdbstub in the above example should be replaced with the following
imports:

import socket
import select
import traceback
import struct
import cPickle
import site
import string

This forces py2exe to bundle the modules needed by Wing's debugger with the .exe,
so that the end user can place include wingdbstub in their scripts instead.

Using Wing IDE with IronPython

87

http://wingware.com/doc/debug/debugging-externally-launched-code

Of course it's also possible to conditionally include the import wingdbstub in the
main code, based on an environment variable or checking user settings in some other
way. For example:

import os
if os.environ.has_key('USE_WING_DEBUGGER'):
 import wingdbstub

A combination of the above techniques can be used to craft debugging support
appropriate to your particular py2exe packaged application.

The above was tested with py2exe run with -q and -b2 options.

Using Wing IDE with IronPython

88

	How-Tos
	Wing IDE Quick Start Guide
	Install Python
	Set up a Project
	Configuring the UI
	Navigating Code
	Editing Code
	Debugging Code
	Other Features
	Related Documents

	How-Tos for Web Development
	2.1. Using Wing IDE with Django
	Installing Django
	Quick Start with Wing IDE Professional
	Existing Django Project
	New Django Project
	Django-specific Actions
	Usage Tips
	Debugging Exceptions
	Debugging Django Templates
	Notes on Auto-Completion
	Running Unit Tests
	Django with Buildout
	Manual Configuration
	Configuring the Project
	Configuring the Debugger
	Launching from Wing
	Launching Outside of Wing
	Debugging Django Templates

	Related Documents

	2.2. Using Wing IDE with web2py
	Introduction
	Setting up a Project
	Debugging
	Setting Run Arguments
	Hung Cron Processes
	Better Static Auto-completion
	Exception Reporting in Old Web2Py Versions
	Related Documents

	2.3. Using Wing IDE with Flask
	Debugging in Wing IDE
	Related Documents

	2.4. Using Wing IDE with Pyramid
	Installing Pyramid
	Configuring your Wing IDE Project
	Debugging
	Notes on Auto-Completion
	Debugging Mako Templates
	Debugging without wingdbstub.py (experimental)
	Related Documents

	2.5. Using Wing IDE with Plone
	Introduction
	Configuring your Project
	Debugging with WingDBG
	WingDBG in buildout-based Plone installations
	WingDBG as an Egg
	Debugging Plone from the IDE
	Related Documents

	2.6. Using Wing IDE with Zope
	Before Getting Started
	Upgrading from earlier Wing versions
	Quick Start on a Single Host
	Starting the Debugger
	Test Drive Wing IDE
	Setting Up Auto-Refresh
	Alternative Approach to Reloading
	Setting up Remote Debugging
	Trouble Shooting Guide
	Related Documents

	2.7. Using Wing IDE with Turbogears
	Installing Turbogears
	Configuring Turbogears 1.x to use Wing
	Configuring Turbogears 2.x to use Wing
	Notes for Turbogears 1.x
	Notes for Turbogears 2.x
	Related Documents

	2.8. Using Wing IDE with Google App Engine
	Creating a Project
	Configuring the Debugger
	Using the Debugger
	Improving Auto-Completion and Goto-Definition
	Trouble-shooting
	Related Documents

	2.9. Using Wing IDE with mod_wsgi
	Debugging Setup
	Disabling stdin/stdout Restrictions
	Related Documents

	2.10. Using Wing IDE with mod_python
	Introduction
	Quick Start
	Example
	Notes
	Related Documents

	2.11. Using Wing IDE with Paste and Pylons
	Installing Paste and/or Pylons
	Debugging in Wing IDE
	Debugging Mako Templates
	Related Documents

	2.12. Using Wing IDE with Webware
	Introduction
	Setting up a Project
	Starting Debug
	Related Documents

	2.13. Debugging Web CGIs with Wing IDE
	Introduction
	Tips and Tricks

	How-Tos for GUI Development
	3.1. Using Wing IDE with wxPython
	Introduction
	Installation and Configuration
	Test Driving the Debugger
	Test Driving the Source Browser
	Using a GUI Builder
	Related Documents

	3.2. Using Wing IDE with PyQt
	Introduction
	Installation and Configuration
	Test Driving the Debugger
	Test Driving the Source Browser
	Using a GUI Builder
	Related Documents

	3.3. Using Wing IDE with GTK and PyGObject
	Auto-Completion
	Related Documents

	3.4. Using Wing IDE with PyGTK
	Introduction
	Installation and Configuration
	Auto-completion and Source Assistant
	Using a GUI Builder
	Details and Notes
	Related Documents

	3.5. Using Wing IDE with matplotlib
	Working in the Python Shell
	Working in the Debugger
	Trouble-shooting
	Related Documents

	How-Tos for Modeling, Rendering, and Compositing Systems
	4.1. Using Wing IDE with Blender
	Introduction
	Related Documents

	4.2. Using Wing IDE with Autodesk Maya
	Debugging Setup
	Better Static Auto-completion
	Additional Information
	Related Documents

	4.3. Using Wing IDE with NUKE and NUKEX
	Project Configuration
	Configuring for Licensed NUKE/NUKEX
	Configuring for Personal Learning Edition of NUKE
	Additional Project Configuration
	Replacing the NUKE Script Editor with Wing IDE Pro
	Debugging Python Running Under NUKE
	Debugger Configuration Detail
	Limitations and Notes
	Related Documents

	4.4. Using Wing IDE with Source Filmmaker
	Debugging Setup
	Related Documents

	How-Tos for Other Libraries
	5.1. Using Wing IDE with virtualenv
	Project Configuration
	Related Documents

	5.2. Using Wing IDE with Raspberry Pi
	Introduction
	Installing and Configuring the Debugger
	Invoking the Debugger
	Configuration Details
	Trouble-Shooting
	Setting up Wifi on a Raspberry Pi
	Related Documents

	5.3. Using Wing IDE with Twisted
	Installing Twisted
	Debugging in Wing IDE
	Related Documents

	5.4. Using Wing IDE with Cygwin
	Configuration
	Related Documents

	5.5. Using Wing IDE with pygame
	Debugging pygame
	Related Documents

	5.6. Using Wing IDE with scons
	Debugging scons
	Related Documents

	5.7. Using Wing IDE with IDA Python
	Debugging IDA Python in Wing IDE
	Related Documents

	Using Wing IDE with IronPython
	Project Configuration
	Related Documents
	6.1. Handling Large Values and Strings in the Debugger
	6.2. Debugging C/C++ and Python together
	6.3. Debugging Extension Modules on Linux/Unix
	Preparing Python
	Starting Debug
	Tips and Tricks

	6.4. Debugging Code with XGrab* Calls
	6.5. Debugging Non-Python Mainloops
	6.6. Debugging Code Running Under Py2exe

