
Introduction for New Users
This tutorial introduces Wing IDE by taking you through its feature set with a small
coding example. We strongly recommend using the Tutorial in Wing IDE's Help menu
when actually working through the tutorial, rather than reading the printed form. The
integrated form of the tutorial contains links into the IDE's functionality that are not
found here.

Wingware, the feather logo, Wing IDE, Wing IDE 101, Wing IDE Personal, Wing IDE
Professional, and "The Intelligent Development Environment" are trademarks or
registered trademarks of Wingware in the United States and other countries.

Disclaimers: The information contained in this document is subject to change without
notice. Wingware shall not be liable for technical or editorial errors or omissions
contained in this document; nor for incidental or consequential damages resulting from
furnishing, performance, or use of this material.

Hardware and software products mentioned herein are named for identification
purposes only and may be trademarks of their respective owners.

Copyright (c) 1999-2015 by Wingware. All rights reserved.

Wingware
P.O. Box 400527
Cambridge, MA 02140-0006
United States of America

Contents
Introduction for New Users 1

Wing IDE Tutorial 1

1.1. Tutorial: Getting Started 1

1.2. Tutorial: Getting Around Wing IDE 2

Context Menus 3

Configuring the Keyboard 3

Auto-Editing 4

Auto-Completion 4

Other Configuration Options 4

1.3. Tutorial: Check your Python Integration 5

1.4. Tutorial: Set Up a Project 7

Opening Files 8

Transient, Sticky, and Locked Files 9

Shared Project Files 10

1.5. Tutorial: Setting Python Path 10

Python Path Hints 12

1.6. Tutorial: Introduction to the Editor 12

1.7. Tutorial: Navigating Code 16

1.8. Tutorial: Debugging 19

1.8.1. Tutorial: Debug I/O 21

1.8.2. Tutorial: Debug Process Exception Reporting 21

Advanced Options 22

1.8.3. Tutorial: Interactive Debugging 22

1.8.4. Tutorial: Execution Environment 25

1.8.5. Tutorial: Remote Debugging 28

1.8.6. Tutorial: Other Debugger Features 30

1.9. Tutorial: Auto-Editing 31

1.10. Tutorial: Turbo Completion Mode (Experimental) 34

1.11. Tutorial: Refactoring 35

1.12. Tutorial: Indentation Features 37

1.13. Tutorial: Other Editor Features 38

1.14. Tutorial: Unit Testing 40

1.15. Tutorial: Version Control Systems 41

1.16. Tutorial: Searching 42

Toolbar Search 43

Keyboard-driven Search 43

Search Tool 44

Replacing 44

Wildcard Searching 45

Regular Expression Search 46

Search in Files Tool 47

File Filters 48

Searching Disk 48

Multi-File Replace 49

1.17. Tutorial: Other IDE Features 49

1.18. Tutorial: Further Reading 53

Wing IDE Tutorial
This tutorial introduces Wing IDE by taking you through its feature set with a small
coding example. For a faster introduction, see the Wing IDE Quick Start Guide.

If you are new to programming, you may want to check out the book Python
Programming Fundamentals and accompanying screen casts, which use Wing IDE
101 to teach programming with Python.

To get started, press the Next (down arrow) icon in the toolbar immediately above this
page:

1.1. Tutorial: Getting Started
To get started, you need to:

(1) Install Python and Wing IDE

If you don't already have them on your system, install Python and Wing IDE. For
detailed instructions, see Installing Wing IDE.

(2) Start Wing IDE

Wing can be started from a menu, desktop, or tray icon or using the command line
executable. For detailed instructions, see Running the IDE.

If you don't have a license, you can obtain a 30-day trial the first time you start Wing.

Once Wing is running, you should switch to using the Tutorial listed in Wing's Help
menu because it contains links directly into the IDE's functionality (this includes step
(3) below).

(3) Copy the Tutorial Directory

Next, copy the entire tutorial directory out of your Wing IDE installation to a location
where you will have write access to the files in it. You can do this manually or use the
following link, which copy the tutorial into the selected directory: Copy Tutorial Now

On OS X, the the tutorial directory is inside Contents/Resources in the .app bundle
(this is listed as Install Directory in Wing's About box).

Note

We welcome feedback, which can be submitted with Submit Feedback in
Wing's Help menu or by emailing support at wingware.com

Wing IDE Tutorial

1

http://wingware.com/doc/howtos/quickstart
http://knuth.luther.edu/~leekent/IntroToComputing/
http://knuth.luther.edu/~leekent/IntroToComputing/
http://python.org/download
http://wingware.com/downloads
http://wingware.com/doc/install/installing
http://wingware.com/doc/install/running-the-ide
mailto:support@wingware.com

To get to the next page in the tutorial, use the Next Page icon shown in the toolbar
just above this text:

1.2. Tutorial: Getting Around Wing IDE
Let's start with some basics that will help you get around Wing IDE while working with
this tutorial.

Wing IDE's user interface is divided into an editor area and two toolboxes separated
by draggable dividers. Try pressing F1 and F2 now to show or hide the two toolboxes.
Also try Shift-F2 to maximize the editor area temporarily, hiding both tool areas and
toolbar until Shift-F2 is pressed again.

Tool and editor tabs can be dragged to rearrange the user interface, optionally
creating a new split. Right click on the tabs for a menu of additional options, such as
adding or removing splits or to move the toolbox from right to left. The number of splits
shown by default in toolboxes will vary according to the size of your monitor.

Wing IDE Tutorial

2

Notice that you can click on an already-active tool tab to minimize that tool area. Click
again on any tab to restore the toolbox to its previous size.

By default, the editor shows all open files in all splits, making it easy to work on
different parts of a file simultaneously. This can be changed by unchecking
Show All Files in All Splits in the right-click context menu on the editor tabs.

Splitting your editor area makes it easier to get around this tutorial. To do this now,
right click on the editor tab area and select Split Side by Side. On small monitors and
laptops, it may be preferable to create a new window for the tutorial by right clicking
on its tab and selected Move Wing IDE Help to New Window.

Context Menus

In general, right-clicking provides a menu for interacting with or configuring a part of
the user interface. The text that follows refers to these menus as "context menus".

Configuring the Keyboard

Use the Edit > Keyboard Personality menu or
User Interface > Keyboard > Personality preference to tell Wing to emulate another
editor, such as Visual Studio, VI/Vim, Emacs, Eclipse, or Brief.

The Configure Tab Key item in the Edit > Keyboard Personality menu or the
User Interface > Keyboard > Tab Key Action preference can be used to select
among available behaviors for the tab key. The default is to match the selected
Keyboard Personality. When the Keyboard Personality is set to Wing IDE, the tab key
acts differently according to context. For example, if lines are selected, repeated

Wing IDE Tutorial

3

presses of the tab key moves the lines among syntactically valid indent positions. And,
when the caret is at the end of a line, pressing the tab key adds one indent level.

Auto-Editing

Wing IDE Pro implements a variety of auto-editing operations, which are designed to
speed up typing and reduce common errors. A subset of the available operations that
does not require learning different keystrokes is enabled by default. For example,
when (is typed Wing will enter the closing) automatically. If the closing) is pressed
anyway, Wing just skips over it. Auto-editing can be disabled as a whole using the
Editor > Auto-Editing > Enable Auto-Editing preference or individual operations
can be selected.

This topic will be covered in more detail later in the tutorial.

Auto-Completion

There are many options for Wing's auto-completer. These are set in the Editor >
Auto-completion preferences group. For example, if you are used to using the Enter
key for completion, you may wish to add that now to the
Editor > Auto-completion > Completion Keys preference.

Other Configuration Options

Wing's cross-platform GUI adjusts to the OS on which you are running it. This can be
overridden with the User Interface > Display Style preference. For example, to set a
dark background display style select Match Palette and set the
User Interface > Color Palette preference to either Black Background or Monokai:

Wing IDE Tutorial

4

The User Interface > Fonts > Display Font/Size and User
Interface > Fonts > Editor Font/Size preferences select fonts for the user interface
and editor.

The size and type of tools used in the toolbar at the top of Wing IDE's main window
can be changed by right clicking on one of the enabled tools.

For more information on adjusting the user interface to your needs, see the
Customization chapter of the manual.

1.3. Tutorial: Check your Python Integration
Before starting with some code, let's make sure that Wing has succeeded in finding
your Python installation. Bring up the Python Shell tool now from the Tools menu. If
all goes well, it should start up Python and show you the Python command prompt like
this:

Wing IDE Tutorial

5

http://wingware.com/doc/custom/index

If this is not working, or the wrong version of Python is being used, you can point Wing
in the right direction with the Python Executable setting in Project Properties,
available from the toolbar and Project menu.

An easy way to determine the path to use here is to start the Python you wish to use
with Wing and type the following at Python's >>> prompt:

import sys
sys.executable

This can also be typed into the IDLE that is associated with your Python install, if IDLE
is installed. On OS X this is generally the easiest way to find the correct executable to
use.

You will need to Restart Shell from Options in the Python Shell tool after altering
Python Executable.

Once the shell works, copy/paste or drag and drop these lines of Python code into it:

for i in range(0, 10):
 print('*' * i)

This should print a triangle as follows:

Wing IDE Tutorial

6

Notice that the shell removes common leading white space when blocks of code are
copied into it. This is useful when trying out code from source files.

Now type something in the shell, such as:

import sys
sys.getrefcount(i)

Note that Wing offers auto-completion as you type and shows call signature and
documentation information in the Source Assistant. Use the Tab key to enter a
selected completion. Other keys can be set up as completing keys using the
Editor > Auto-completion > Completion Keys preference.

You can create as many instances of the Python Shell tool as you wish. Each one
runs in its own private process space that is kept totally separate from Wing IDE and
your debug process.

1.4. Tutorial: Set Up a Project
Now we're ready to get started with some coding. The first step in working with Wing
IDE is to set up a project file so that Wing can find and analyze your source code and
store your work across sessions.

If you haven't already copied the tutorials directory from your Wing IDE installation,
please do so now as described in Tutorial: Getting Started.

Wing starts up initially with the Default Project. Start by creating a new project for your
work on this tutorial, using Save Project As in the Project menu. Use tutorial.wpr as
the project file name and place it in the tutorial directory that you created earlier.

Wing IDE Tutorial

7

http://wingware.com/doc/intro/tutorial-getting-started

Next, use the Add Existing Directory item in the Project menu to add your copy of
the tutorials directory. Leave the default options checked so that all files in that
directory are added to the project.

To make it easier to work on source code and read this tutorial at the same time, you
may want to right-click on the editor tab area and select Split Side by Side.

Opening Files

Files in your project can be opened by double-clicking in the Project tool, by typing
fragments into the Open From Project dialog, and in other ways that will be
described later.

Try the Open From Project dialog now by using the key binding listed for it in the File
menu. Type ex as the file name fragment and use the arrow keys and then Enter to
open the file example1.py. Now try it again with the fragment sub ex. This matches
only files with both sub and ex in their full path names. In larger projects, Open From
Project is usually the easiest way to open a file.

Wing IDE Tutorial

8

Transient, Sticky, and Locked Files

Wing opens files in one of several modes in order to keep more relevant files open,
while auto-closing others. To see this in action, right-click on os in import os at the
top of example1.py and select Goto Definition. The file os.py will be opened
non-sticky, so that it is automatically closed when hidden.

The mode in which a file is opened is indicated with an icon in the top right of the
editor area:

- The file is sticky and will be kept open until it is closed by the user.

- The file is non-sticky and will be kept open only while visible. When a non-sticky
file is edited, it immediately converts to sticky.

- The file is locked in the editor, so that the editor will not be reused to display
other newly opened files. This mode is only available when multiple editor splits are
present.

Clicking on the stick pin icon toggles between the available modes. Right-clicking on
the icon displays a menu of recently visited files. Note that this contains both
non-sticky and sticky files, while the Recent list in the File menu contains only sticky
files.

Wing IDE Tutorial

9

The number of non-sticky editors to keep open, in addition to those that are visible, is
set with the Editor > Advanced > Maximum Non-Sticky Editors preference.

This mechanism is also used in multi-file searches and other features that navigate
through many files. In general you can ignore the modes and Wing will keep open the
files you are actually working on, while auto-closing those that you have only visited
briefly.

Shared Project Files

Wing actually writes two files for each project, for example tutorial.wpr and
tutorial.wpu. If you plan to use Wing projects with a revision control system such as
Mercurial, Git, Subversion, or Perforce, you should check in only the *.wpr file. For
details on setting up a sharable project, see Sharing Projects.

1.5. Tutorial: Setting Python Path
Whenever your Python source depends on PYTHONPATH, either set externally or by
altering sys.path at runtime, you will also need to tell Wing about your path.

This value can be entered in Python Path in the Project Properties dialog, which is
accessible from the Project menu and the toolbar:

Wing IDE Tutorial

10

http://wingware.com/doc/proj/project-types

For this tutorial, you need to add the subdir sub-directory of your tutorials directory to
Python Path, as shown above. This directory contains a module used as part of the
first coding example.

Note that the full path to the directory subdir is used. This is strongly recommended
because it avoids potential problems finding source code when the starting directory is
ambiguous or changes over time. If relative paths are needed to make a project work
on different machines, use an environment variable like
${WING:PROJECT_DIR}/subdir. This is described in more detail in Environment
Variable Expansion.

The configuration used here is for illustrative purposes only. You could run the
example code without altering PYTHONPATH by moving the path_example.py file to
the same location as the example scripts, or by placing it into your Python
installation's site-packages directory, which is in the default PYTHONPATH.

Wing IDE Tutorial

11

http://wingware.com/doc/proj/variable-expansion
http://wingware.com/doc/proj/variable-expansion

Python Path Hints

If your main entry point is Python code that alters sys.path, and the file is set as the
Main Entry Point in Project Properties then Wing can often determine the correct
PYTHONPATH to use without any changes to Python Path in Project Properties.

When in doubt, compare value of sys.path at runtime in your code with the value
reported by Show Python Environment in the Source menu.

1.6. Tutorial: Introduction to the Editor
Now that you have set up your project, Wing will have found and analyzed the tutorial
examples, and all the modules that are imported and used by them. This analysis
process runs in the background and is used for auto-completion, call tips, and other
features. With larger code bases, you may notice the CPU load from this process, and
Wing will indicate that processing is active by displaying Analyzing Files in the status
area at the bottom left of the main IDE window:

However, with this tutorial analysis will have happened instantaneously after the
project was configured.

Editing with Wing IDE

Let's start by trying out a subset of Wing's editor features, focusing on the
auto-completer, Source Assistant, and some of Wing's auto-editing operations.

Open the file example1.py from the Project tool. Then bring up the Source Assistant
tool the Tools menu or by clicking on its tab. This is where Wing IDE shows
documentation, call signature, and other information as you move around in your
source code or work with other tools.

Scroll down to the bottom of example1.py and enter the following code by typing (not
pasting) it into the file:

news = Rea

Wing displays a context-sensitive auto-completer as you type. You can scroll around
in the list with the arrow keys, type Esc or Ctrl-G to abort completion, or Tab to enter
the currently selected completion.

If you are used to using the Enter key for auto-completion, add it to the
Editor > Auto-Completion > Completion Keys preference now.

Wing IDE Tutorial

12

When you first typed "news" this completer wasn't helpful because you had not yet
defined news as a symbol in your source. However, once you move on to type = Re,
Wing displays another completion list with ReadPythonNews highlighted. Notice that
the Source Assistant updates to show call information for that function, or for whatever
value is selected in the auto-completer:

Next, press Tab to enter the completion of ReadPythonNews and type ((left
parenthesis). You should now see the following code in your editor because Wing
auto-enters the argument list and closing parenthesis:

Notice that when Wing auto-enters arguments, it starts with all arguments selected so
you have the option of simply typing over them. Alternatively, the Tab key can be used
to move between and replace arguments or just the default value in keyword
arguments (like force in this example). When argument entry is completed by

Wing IDE Tutorial

13

pressing) at the end of the list or by moving the caret out of the list, Wing
automatically removes any keyword arguments with unaltered defaults.

Try this a few times now to get a feel for how the tab order works. Undo can be used
to easily undo all changes made during argument entry. If you prefer not to use this
feature, it can be turned off with the Editor >
Auto-Editing > Auto-Enter Invocation Args preference. The same preferences
page can be used to disable auto-editing entirely or to enabled and disable other
operations. The default set of enabled auto-editing operations are those that should
not interfere significantly with finger memory. The other operations will be described
later.

Now edit the code you have entered so it reads as follows and the caret is inside the
():

news = ReadPythonNews()

Now type Get to start entering arguments for your invocation of ReadPythonNews.
You will see the Source Assistant alter its display to highlight the first argument in the
call signature for ReadPythonNews and add information on the argument's
completion value:

Wing IDE Tutorial

14

The docstring for ReadPythonNews is temporarily hidden to conserve screen space.
This behavior can be toggled with the Show docstring during completion option in
the Source Assistant's context menu.

Now continue entering the rest of the source line so you have the following complete
line of source code:

news = ReadPythonNews(GetItemCount())

Notice that typing a close parenthesis at the end of the invocation skips over the close
parenthesis that was previously auto-entered.

To play around with the editor a bit more, enter the following additional lines of code:

PrintAsText(news)
PromptToContinue()
PrintAsHTML(news)

Wing IDE Tutorial

15

At this point you have a complete program that can be run in the debugger. Don't try it
yet, however. It contains some deliberate bugs and first we should take a look at some
of Wing's code navigation features.

1.7. Tutorial: Navigating Code
As already noted, the Source Assistant updates as you move your insertion caret
around the editor, or when browsing through the auto-completer. For example, try
moving between the invocation of PrintAsText and the variable news in the code you
just typed. The blue links in the Source Assistant can be used to jump to the points
of definition of each symbol listed there.

If you click on one of the links in the Source Assistant, use the green back arrow at
the top left of the editor to return from the value or type definition:

The link after Symbol: goes to the point of definition of that variable, while any links
after Likely Type: go to the point of definition of that data type. These are the same if
the symbol is a function, method, or class, but they differ for variables. For example,
for news the point of definition is the line where it is first assigned a value and the type
is a Python list.

Python Documentation

For built-ins and code in the Python standard library, Wing tries to add links into the
Python documentation. For example, type open in the editor and try out the
http://docs.python.org link. The documentation will be opened in your default web
browser.

Wing IDE Tutorial

16

Now use Undo or press the delete key to remove open from your code.

Goto-Definition

A quicker way to visit the point of definition of a symbol is to click on it and press F4 or
right click and use one of the Goto Definition context menu items. Again, you can
use the history back/forward arrows at the top left of the editor to return from the point
of definition.

Try this for ParseRDFNews in example1.py. Wing will open up the file
path_example.py and show the point of definition of ParseRDFNews. Notice that the
file is opened in non-sticky mode and will auto-close unless you toggle the stick
pin icon to or edit the file.

Source Index

Wing maintains a set of source index menus at the top of the editor area. The menus
are updated as you move around code, and additional levels of menus are added as
needed, based on context. Try these now to navigate to CHandler in
path_example.py, and then use the second menu to navigate to endElement.

Now use the history back arrow at top left of the editor area to return to the invocation
of ParseRDFNews in example1.py. You will need to press the arrow several times to
move back through your visit history.

Find Symbol

Wing IDE Tutorial

17

If you are looking for a symbol defined in the current scope, use Find Symbol in the
Source menu. This displays a dialog where you can type a fragment matching the
symbol name. Use the arrow keys to traverse the matches and press Enter to visit the
symbol's point of definition.

Find Symbol in Project functions in the same way but searches all files in the
project.

Find Points of Use

It is also possible to enumerate and visit all points of use of a symbol. Try this now by
right clicking on news and selecting Find Points of Use. Wing will display the Uses

Wing IDE Tutorial

18

tool with a list of all the points of use for that symbol. Click on the uses to visit them in
the editor.

Note that Wing distinguishes between the news that is defined at the top level of
example1.py (in the code that you typed) and the like-named but independent
variables news inside the various functions here. For an example, use F4 to go to the
definition of ReadPythonNews and run Find Uses on the variable news defined at
the bottom of the function. The results are distinct from those returned for the top-level
news.

There are many other editor features worth learning, but we'll get back to those later in
this tutorial, after we try out the debugger.

1.8. Tutorial: Debugging
The example1.py program you have just created connects to python.org via HTTP,
reads and parses the Python-related news feed in RDF format, and then prints the
most recent five items as text and HTML. Don't worry if you are working offline. The
script has canned data it will use when it cannot connect to python.org.

To start debugging, set a breakpoint on the line that reads return 5 in the
GetItemCount function. This can be done by clicking on the line and selecting the
Break toolbar item, or by clicking on the left-most margin to the left of the line. The
breakpoint should appear as a filled red circle:

Next start the debugger with the green arrow icon in the toolbar or the Start/Continue
item in the Debug menu. Wing will show the Debug Properties dialog with the
properties that will be used during the debug run. Just ignore this for now, uncheck the
Show this dialog before each run checkbox at the bottom, and press OK.

Wing will run to the breakpoint and stop, placing a red indicator on the line. Notice that
the toolbar changes to include additional debug tools, as shown below:

Wing IDE Tutorial

19

Your display may vary depending on the size of your screen or if you have altered the
toolbar's configuration. Wing displays tooltips explaining what the tools do when you
mouse over them.

Now you can inspect the program state at that point with the Stack Data tool and by
going up and down the stack from the toolbar or Debug menu. The stack can also be
viewed as a list using the Call Stack tool.

Notice that the Debug status indicator in the lower left of Wing's main window changes
color depending on the state of the debug process. Mouse over the indicator to see
detailed status in a tooltip:

Next, try stepping out to the enclosing call to ReadPythonNews. In this particular
context, you can achieve this in a single click with the Step Out toolbar icon or Debug
menu item. Two clicks on Step Over also work. ReadPythonNews is a good function
to step through in order to try out the basic debugger features covered above.

Wing IDE Tutorial

20

1.8.1. Tutorial: Debug I/O

Before continuing any further in the debugger, bring up the Debug I/O tool so you can
watch the subsequent output from the program. This is also where keyboard input
takes place in debug code that requests for it.

Once you step over the line PrintAsText(news) you should see output appear as
follows:

For code that tries to read from stdin or uses input (or in Python 2.x raw_input), the
Debug I/O tool is where you would type your input to your program. Try this now by
stepping over the PromptToContinue call. You will see the prompt "Press Enter to
Continue" appear in the Debug I/O tool and the debugger will not complete the
Step Over operation until you press Enter while focus is in the Debug I/O tool.

Note that you can also configure Wing to use an external console from the Options
menu in the Debug I/O tool. This is useful for code that depends on details of the
Debug I/O environment (such as cursor control with special output characters).

1.8.2. Tutorial: Debug Process Exception Reporting

Wing's debugger reports any exceptions that would be printed when running the code
outside of the debugger.

Try this out by continuing execution of the debug process with the Debug toolbar item
or Start / Continue item in the Debug menu.

Wing will stop on an incorrect line of code in PrintAsHTML and will report the error in
the Exceptions tool:

Wing IDE Tutorial

21

Notice that this tool highlights the current stack frame and that you can click on frames
to navigate the exception backtrace. Whenever you are stopped on an exception, the
Debugger Status indicator in the lower left of Wing's main window turns red.

Advanced Options

Wing's debugger provides several exception handling modes, which differ in how they
determine which exceptions should be reported. It is also possible to add specific
exception types to always report or never report. This is described in more detail in
Managing Exceptions. Most users will not need to alter these options, but being aware
of them is useful.

1.8.3. Tutorial: Interactive Debugging

Wing IDE Professional's Debug Probe provides a powerful way to find and fix bugs,
and to try out new code interactively in the live runtime state. This works much like the
Python Shell but lets you interact directly with your paused debug program, in the
context of the current stack frame:

Try it out from the point of exception reached earlier by typing this:

Wing IDE Tutorial

22

http://wingware.com/doc/debug/managing-exceptions

news[0][0]

This will print the date of the first news item:

Wing offers auto-completion as you type and shows call signature and documentation
information in the Source Assistant, just as when you work in the editor. However, in
the Debug Probe the data displayed is obtained from the live runtime state and not
only from static analysis of your source code.

Next, try this:

news[0][0] = '2013-06-15'

This is one way to change program state while debugging, which can be useful when
testing out code that will go into a bug fix. Try this now:

PrintAsText(news)

This executes the function call and prints its output to the Debug Probe using the
modified value for news.

Wing IDE Tutorial

23

Here is another possibility. Copy/paste or drag and drop this block of code to the
Debug Probe:

def PrintAsHTML(news):
 for date, event, url in news:
 print('<p><i>%s</i> %s</p>' % (date, url, event))

This replaces the buggy definition of PrintAsHTML found in the example1.py source
file for the life of the debug process, so that you can now execute it without errors as
follows:

PrintAsHTML(news)

The Debug Probe is useful in designing fixes for bugs that depend on lots of program
state, or that happen in a context that is hard to reproduce outside of a debugger.

Conditional Breakpoints

Since the Debug Probe is all about working in a selected runtime context, now is a
good time to take a look at conditional breakpoints, which are a good way to get the
debugger to stop in the context you want to work with.

To set a conditional breakpoint, right click on the breakpoint margin and select
Set Conditional Breakpoint. This brings up a dialog in which you can enter any
Python expression. If the expression evaluates to True or raises an exception, the
debugger will stop on it. If the expression is not True then the debugger will continue
running.

Try this now by first selecting Remove All Breakpoints from the Debug menu and
then setting a conditional breakpoint on the print within the for loop in PrintAsText.
Use a conditional such as 'beta' in event. You may need to replace the word beta
with some other word or fragment to get the debugger to stop here, since this
depends on the news items that are currently listed on python.org. If necessary, take
a look at the output from your previous runs of example1.py to find a word that
appears in only one of the news items.

Once this is done, press the Restart Debug icon in the toolbar or select
Restart Debugging in the Debug menu. Wing should stop on your conditional
breakpoint in the loop iteration where it is true. In more complex code, this would be a
quick way to get to the program state that is causing a bug or for which you want to
write some new code.

Working in the Editor While Debugging

Wing IDE Tutorial

24

When the debugger is active, Wing uses both its static analysis of your code and
introspection of the live runtime state to offer auto-completion, call tips, and
goto-definition in the editor, whenever you are working in code that is active on the
debug stack.

Try this now by typing the following in the Debug Probe:

testvar = 'test'

Then switch to example1.py and in PrintAsText (where you are currently stopped on
a conditional breakpoint) create a new line and type this:

test

Notice that the newly created variable testvar shows up in the completer, with a cog
icon to indicate that it was found in the runtime state:

This is a handy way to get correct auto-completion in dynamic code where static
analysis is not able to find all the symbols that will be defined when code is executed.

1.8.4. Tutorial: Execution Environment

In this tutorial we've been running code in the default environment and with the default
Python interpreter. In a real project you may want to specify one or more of the
following:

• Python interpreter and version
• PYTHONPATH
• Environment variables

Wing IDE Tutorial

25

• Initial run directory
• Options sent to Python
• Command line arguments

Wing lets you set these for your project as a whole and for specific files.

Project Properties

The Environment and Debug/Execute tabs in the Project Properties dialog,
accessed from the Project menu, can be used to select the Python interpreter that is
being used, the effective PYTHONPATH, the values of environment variables, the
initial directory for the debug process, and any options passed to Python itself.

In most cases, Project Properties is where you will make changes to the runtime
environment for all the project code that you execute and debug.

Try this out now by adding an environment variable TESTPROJECT=1 to the
Enviroment in Project Properties. Then restart debugging and look at os.environ to
confirm that the new environment variable is defined.

File Properties (and Launch Configurations)

File Properties are used to configure the command line arguments sent to a file when
it is executed or debugger, and (optionally) to override the project-defined
environment.

The File Properties dialog is accessed from the Current File Properties item in the
Source menu or by right-clicking on a file in the editor or Project tool and selecting
Properties.

Wing IDE Tutorial

26

The most common use of File Properties is simply to set the command line
arguments to use with a file. Try this now by bringing up File Properties for
example1.py and set the run arguments in the Debug/Execute tab to test args.

Now if you restart debugging and type the following in the Debug Probe you will see
that the environment and arguments have been set:

os.environ.get('TESTPROJECT')
sys.argv[1:]

The output should be:

1
['test', 'args']

To also override the project-defined environment for a particular file, define a
Launch Configuration and select it in File Properties. Launch configurations set up
an environment like that which can be specified in Project Properties, paired with a
particular set of command line arguments.

Try this now by bringing up File Properties for example1.py again and selecting
Use Selected Launch Configuration for Environment under the Debug/Execute
tab. Press the New button that appear, use``My Launch Config`` as the name for the
new launch configuration, and press OK. Wing will show the properties dialog for the
new launch configuration.

Next enter run arguments other args and change the Environment to
Add to Project Values and enter TESTFILE=2 and TESTPROJECT=. This adds
environment variable TESTFILE and removes the TESTPROJECT from the inherited
project-defined environment.

Now restart debugging again and enter this in the Debug Probe:

os.environ.get('TESTPROJECT')
os.environ.get('TESTFILE')
sys.argv[1:]

The output should be:

None
2
['other', 'args']

Main Debug File

Wing IDE Tutorial

27

You can specify one file in your project as the main entry point for debugging. When
this is set, debugging will always start there unless you use Debug Current File in the
Debug menu.

To set a main debug file use Set Current as Main Debug File in the Debug menu,
right click on the Project tool and select Set as Main Debug File, or use the
Main Debug File property in the Debug tab of the Project Properties dialog.

Try this now by setting example1.py as the main debug file. Now it is no longer
necessary to bring example1.py to front in order to start debugging it.

Whether or not you set a main debug file depends on the nature of your project.

Named Entry Points

In some projects it is more convenient to define multiple entry points for executing and
debugging code. To accomplish this, Named Entry Points can be set up from the
Debug menu. Each named entry point binds an environment, either specified in the
project or in a launch configuration, to a particular file. Once defined, they can be
assigned a key binding or accessed from the Debug Named Entry Point and
Execute Named Entry Point items in the Debug menu.

Named Entry Points are a good way to launch a single file with different arguments or
environment.

1.8.5. Tutorial: Remote Debugging

So far we've been debugging code launched from inside of Wing. Wing can also
debug processes that are running in a web framework, as scripts in a larger
application, or that get launched from the command line.

Let's try this now with example2.py in your tutorial directory. First, copy
wingdbstub.py out of install directory listed in Wing's About box. Place this in the
same directory as example2.py. Next, click on the bug icon in the lower left of Wing
IDE's main window and select Accept Debug Connections. Then set a breakpoint
on lines 10 and 22 of example2.py:

Wing IDE Tutorial

28

If you are working on OS X, using the Windows zip install, or using the Linux tar
install of Wing, you will need to edit wingdbstub.py to set WINGHOME to the full path
to the Wing IDE installation directory (on OS X, this is the name of Wing's .app
directory). This is done automatically by the regular Windows installer and Debian and
RPM installs on Linux. If you are using one of those you can skip this step.

Now we're ready to debug example2.py when it is launched from outside of the IDE.
To launch it, use the DOS Command prompt on Windows, a bash or similar command
prompt on Linux, or Terminal or an xterm on OS X by typing:

python example2.py

You may need to specify the full path to python if it is not on your path.

This should start up the code, print some messages, connect to the IDE, and stop on
the breakpoint on line 22. Read through the code and the messages printed to
understand what is happening. You can verify that the debugger attached by looking

Wing IDE Tutorial

29

at the color of the bug icon in the lower left of the IDE window, and by hovering the
mouse over it:

Once you are stopped at a breakpoint or exception in externally launched code, the
debugger works just as it would had you launched the debug process from the IDE.
The only difference is that the environment is set up by the process itself and the
settings specified in Project Properties and File Properties are not used.

When you continue the debugger from the toolbar or Debug menu, the program
should print the value of x and exit.

This is a very simple example to illustrate how externally launched code can be
debugged. The import of wingdbstub can also be placed in functions or methods,
and there is a debugging API that provides control over starting and stopping
debugging.

See Debugging Externally Launched Code for details and the How-To guides for
information on setting this up with specific web frameworks, compositing and
rendering tools, and other applications.

Remote Debugging

Using the same mechanism, but with some additional configuration, it is also possible
to debug Python code running on another machine. This is documented in Remote
Debugging in the Wing IDE manual.

1.8.6. Tutorial: Other Debugger Features

Before moving on to the rest of the IDE's features, here are a few details worth
knowing about the debugger:

Watch Tool

The Watch tool lets you watch variables over time by symbolic name or object
reference, by right-clicking on them in the Stack Data or Watch tools. You can also
watch expressions typed into the Watch tool.

Wing IDE Tutorial

30

http://wingware.com/doc/debug/debugger-api
http://wingware.com/doc/debug/debugging-externally-launched-code
http://wingware.com/doc/howtos/index
http://wingware.com/doc/debug/remote-debugging
http://wingware.com/doc/debug/remote-debugging

Modules Data View

By default, Wing filters out modules and some other data types from the values shown
in the Stack Data tool. In some cases, it is useful to view values stored in modules.
This can be done with the Modules tool, which is simply a list of all modules found in
sys.modules:

Breakpoint Manager

The Breakpoints tool accessed from the Tools menu shows a list of all defined
breakpoints and allows enabling/disabling, editing the breakpoint conditional, setting
an ignore count, and inspecting the number of times a breakpoint has been reached
during the life of a debug process.

1.9. Tutorial: Auto-Editing
Let's revisit Auto-Editing, which was introduced before we tried out the debugger. So
far we've seen the editor auto-enter invocation arguments and closing parentheses.
There are a number of other auto-editing operations available as well:

Applying Characters to a Selection

Wing IDE Tutorial

31

If you select a range of text in the editor and press a quote, parenthesis, brace,
bracket, or #, Wing applies that key stroke to the selection.

For example, try selecting a few lines of non-comment code and press #. Wing will
comment out those lines using the comment style configured in the
Editor > Block Comment Style preference. Pressing # a second time will remove the
comment characters.

Also, selecting some text and pressing " (double quote) will surround it with double
quotes, or pressing ((open parenthesis) will surround it with parentheses. This also
works when typing single quotes, triple quotes, back ticks, brackets, and braces.

Similarly, placing the caret next to a quote in a string and pressing either double quote
or single quote will convert that string to either a double quoted or single quoted string.

These operations are on by default and may be disabled with the Apply Quotes
to Selection, Apply Comment Key to Selection, and Apply
[], (), and {} to Selection preferences in the Editor > Auto-Editing preference group.

Auto-Entering Spacing

Wing can also auto-enter spaces as you type code, optionally enforcing PEP8 style
spacing. This auto-editing operation is off by default but can be turned on with the
Editor > Auto-Editing > Auto-Enter Spaces preference. Try turning this on now and
slowly typing the following into an editor:

import os
if os.environ['TEST'] == 'X' * 3:
 pass

Notice that Wing is auto-entering a space after the], =, and other characters
according to the context in the code. If you press the space anyway, it is ignored.

If you also enable the Editor > Auto-Editing > Enforce PEP8 Style Spacing
preference, Wing will try to enforce PEP8 style spacing as you type. For example,
typing the following disallows extra spaces around =:

x = 'test'

According to PEP8, spaces should not be used in argument lists. This is also the
default behavior for Wing, whether or not PEP8 enforcement is on. To override this,
enable the Editor > Auto-Editing > Spaces in Argument Lists preference.

Managing Blocks with the Colon Key

Wing IDE Tutorial

32

This operation saves a lot of typing but is off by default to avoid confusing new users.
Enable it now with the Editor > Auto-Editing > Manage Blocks on
Repeated Colon Key Presses preference then type the following into an editor:

if x == 1:

Notice that Wing will auto-insert a new line and indentation after the colon.

Now try typing the following before text = None on line 36 of example1.py, inside
ReadPythonNews:

if force:

A new line and indent are added as before. Now, without moving the caret press :
again. Wing will move the first following line (txt = None) under the new block so it
looks like this:

Again without moving the caret press : a third time. Wing now moves the entire
following block, up until the next blank line or first line indented less than the current
one, so it looks like this:

Line Continuations

If you press Enter inside a comment (or string inside ()) and there is text after the
caret, Wing auto-continues the line, placing the necessary comment or quote
characters. For example, pressing Enter after the word code on the first line of
example1.py results in the following:

Wing IDE Tutorial

33

This is on by default and can be disabled with the Editor > Auto-Completion
> Continue Comment or String on New Line preference.

Correcting Out-of-Order Typing

Wing also tries to correct out-of-order typing. For example, type the following in an
editor:

def y(:)

Wing figures out that the colon is misplaced and auto-corrects this to read:

def y():

Similarly, if you type the following:

y()x

Wing figures out that a . is probably missing and auto-corrects this to read:

y().x

By relying on this, it is possible to save key strokes for caret movement when coding.

This auto-editing operation is on by default and can be disabled with the
Editor > Auto-Completion > Correct Out-of-Order Typing preference.

1.10. Tutorial: Turbo Completion Mode (Experimental)
Auto-completion normally requires pressing a completion key, as configured in the
Editor > Auto-Completion > Completion Keys preference, before a completion is
entered into the editor.

Wing also has an experimental Turbo auto-completion mode for Python where
completion can occur on any key that cannot be part of a symbol. This can greatly
reduce typing required for coding but it takes some effort to learn to use this feature.

Try it now by enabling the Python Turbo Mode (Experimental) preference. Then go
to the bottom of example1.py and press the following keys in order: R, (, G, (. You will
see the following code in the editor produced by these four key strokes:

Wing IDE Tutorial

34

ReadPythonNews(GetItemCount())

Turbo completion mode distinguishes between contexts where a new symbol may be
defined and those where an existing symbol must be used. For example try typing the
following keystrokes on a new line: c, =. Wing knows that the = indicates you are
defining a new symbol so it does not place the current selection from the
auto-completer.

In a context where you are trying to type something other than what is in the
completer, pressing Ctrl briefly by itself will hide the auto-completer and thus disable
turbo-completion until you type more symbol characters and the completer is shown
again.

This mode is still considered experimental because it doesn't always do the right
thing, but on the whole enabling Python Turbo Mode cuts back considerably on
unnecessary typing.

1.11. Tutorial: Refactoring
Refactoring is a general term for renaming or restructuring code in a way that does not
alter its functionality. It is useful for cleaning up code or to prepare code for easier
extension or reuse.

Wing implements a number of refactoring operations. Let's try some of these now in
example1.py.

Rename Symbol

Right click on kCannedData in the import statement at the top of the file and select
Rename Symbol from the Refactor sub-menu (or just click on kCannedData and
select the operation from the Refactor menu).

Wing will bring the refactoring tool to the front and enumerates the points of use for
the symbol you have selected:

Now enter kCannedTuna as the new name to use and press Enter or the
Rename Checked button. Wing instantly renames all uses of the symbol.

Wing IDE Tutorial

35

Move Symbol

Now try moving PromptToContinue into subdir/path_example.py with the
Move Symbol operation. In the refactoring tool, use Browse... to select
subdir/path_example.py as the target location and leave Scope set to
<module global scope>. Then press Move & Update Checked. Wing moves the
point of definition into the target file and introduces the necessary import so it can still
be used from example1.py.

Note that the whole module is imported and you would have to manually fix up the
import if you wished to add the symbol to list in the from path_example import
statement instead.

Extract Function/Method

Next select the first larger block in ReadPythonNews as follows:

Then select the Extract Function/Method refactoring operation and enter
ReadNewsCache as the name for a new top-level function. Wing will create a new
function and convert the point of use to a call to that function, as follows, inserting all
the necesary arguments and return values:

txt = ReadNewsCache(force, newscache)

Click on ReadNewsCache and use F4 to visit its point of definition. Then use the
history back arrow to get back to the point of use and press Revert in the Refactoring
tool to undo this change.

Try it again now after selecting Nested Function instead to see how that operation
differs. Then press Revert again.

Wing IDE Tutorial

36

Introduce Variable

Wing can also introduce new variables for an expression. For example, select
time.time() - mtime in ReadPythonNews and use Introduce Variable to create a
variable called duration. Wing inserts the variable and substitutes it into the original
expression:

If there had been multiple instances of time.time() - mtime in the scope, all of them
would have been replaced.

1.12. Tutorial: Indentation Features
Since indentation is syntactically significant in Python, Wing provides a number of
features to make working with indentation easier.

Auto-Indentation

By now you will have noticed that Wing auto-indents lines as you type, according to
context. This can be disabled with the Auto-Indent preference.

Wing also adjusts the indentation of blocks of code that are pasted into the editor. If
the indentation change is not what you wanted, a single Undo removes the
indentation adjustment, if there was one.

Block Indentation

In Wing's default keyboard personality, the Tab key is defined to indent the current
line or blocks of lines, rather then entering a tab character (which can be done with
Ctrl-Tab). As noted earlier, the Tab Key Action preference can be used to customize
how the tab key behaves.

One or more selected lines can be increased or reduced in indentation, or matche
indentation according to context, from the Indentation toolbar group:

Repeated presses of the Match Indent tool will move the selected lines among the
possible correct indent levels for that context.

Wing IDE Tutorial

37

These indentation features are also available in the Source menu, where their key
bindings are listed.

Converting Indentation Styles

Wing's Indentation tool can be used to analyze and convert the style of indentation
found in source files. See Indentation Manager for details.

Folding

Unless the feature is disabled with the Enable Folding preference, Wing can fold
editor code by indentation levels to hide areas that are not currently of interest or as a
way to see a quick summary of the contents of a source file.

The folding operations are enumerated in the Folding sub-menu of the Source menu
and in the fold margin context menu.

Folding acts in such a way that selecting across a fold and copying will copy the text,
including its hidden portions. Take a look at the Folding sub-menu in the Source
menu and refer to Folding for details.

1.13. Tutorial: Other Editor Features
There are a number of other editor features that are worth knowing about:

Goto-Line

Navigate quickly to a numbered source line with the Goto Line item in the Edit menu,
or with the key binding displayed there. In some keyboard personalities, the line
number is typed into the data entry area that appears at the bottom of the window.
Press Enter to complete the action.

Line numbers can be shown in the editor with the Show Line Numbers item in the
Edit menu.

Selecting Code

Wing supports character, line, and block mode selection from the Selection Mode
item in the Edit menu.

In Python code, the Select sub-menu in the Edit menu can be used to easily select
and traverse logical blocks of code. The Select More and Select Less operations are
particularly useful when preparing to type over or copy/paste ranges of text. Try these
out now on urllib in ReadPythonNews in example1.py. Each repeated press of
Ctrl-Down will select more code in logical units. Press Ctrl-Up to select less code.

The other operations in the Select sub-menu can be used for selecting and moving
forward or backward over whole statements, blocks, or scopes. If you plan to use

Wing IDE Tutorial

38

http://wingware.com/doc/edit/indentation-manager
http://wingware.com/doc/edit/structural-folding

these and your selected User Interface > Keyboard > Keyboard Personality
preference does not support them, then you will want to define key bindings for them
using the User Interface > Keyboard > Custom Key Bindings preference. The
command names are select-x, next-x, and previous-x where x is either statement,
block, or scope.

Line Editing

Lines can quickly be inserted, deleted, duplicated, swapped, or moved up or down
with the operations in the Line Editing sub-menu of the Source menu. If your
keyboard personality does not support them, then you can define key bindings for
those you are interested in using. The command names are: new-line-before,
new-line-after, duplicate-line-above, duplicate-line, move-line-up,
move-line-down, delete-line, and swap-lines.

Code Snippets

The Snippets tool in the Tools menu can be used to define and use code snippets for
commonly repeated motifs, such as class or def skeletons or documentation
templates.

You may already have noticed that these appear in Wing's auto-completer. Try this
now by typing def into the top level of a file in the editor. Then select the def (snippet)
completion choice. Wing will place the snippet into the editor and enter into a data
entry mode similar to the mode used for entering arguments when the
Auto-Enter Invocation Arg``s auto-editing operation
is enabled. Type any text you want in each field within the snippet and press
``Tab to move between the fields. Data-entry mode will end at the last tab stop or if
you move out of the snippet body.

Now try it again with class and then inside the scope of the class use the def snippet
again. Notice that the form of snippet in this context differs from the one used at the
top level (it includes self). Like-named snippets can be defined in this way for the
following contexts: Module, class, function, method, attribute (after a period),
comment, and string.

For details see Code Snippets.

Block Commenting

Lines of code can be commented out or un-commented quickly from the Source
menu or, as noted earlier, by pressing the # key while several lines of Python code are
selected . In Python code, the Block Commenting Style preference controls the type
of commenting that is used. The default is to use indented single # characters since
this works better with some of Wing's other features.

Wing IDE Tutorial

39

http://wingware.com/doc/edit/snippets

Brace Matching

Wing highlights brace matching as you type unless disabled from the Auto
Brace Match preference. The Match Braces item in the Source menu causes Wing
to select all the code that is contained in the nearest matching braces found from the
current insertion point on the editor. Repeated invocations of the command will
traverse outward or forward in the file.

Text Reformatting

Code can be re-wrapped to the configured Reformatting Wrap Column with the
Justify Rewrap item in the Source menu. This will limit wrapping to a single logical
line of code, so it can be used to reformat an argument list or long list or tuple without
altering surrounding code.

Bookmarks

The Bookmarks tool in the Tools menu and the bookmarking commands in the
Source menu and editor context menu can be used to define and jump to marked
locations in the editor. In Python files, these bookmarks are defined relative to the
named scope in the file so they move around with the scope as the file is edited. See
Bookmarks for details.

1.14. Tutorial: Unit Testing
Wing's Testing tool makes it easy to run and debug units tests written for the
unittest, doctest, pytest, nose, and Django unit testing frameworks.

Let's try this out now. First, open up Project Properties and under the Testing tab
insert a Test File Pattern that is set to Glob / Wildcard and test_*.py. This tells Wing
which of your project files are unit test files. Press OK or Apply and bring up the
Testing tool from the Tools menu. This should now contain an entry for the file
test_example1.py:

Next comment out the line that reads PromptToContinue in example1.py so that the
module can be loaded by the tests without prompting. One way to do this is to click on
the line and use Toggle Block Comment from the Source menu.

Wing IDE Tutorial

40

http://wingware.com/doc/edit/bookmarks

Then press Run Tests in the Testing tool. You should see two of the three tests
pass, and one will fail. You can expand the tree to see details of the failed tests,
including any output printed by the test and the exception that occurred. Double
clicking on the test results and exception will take you to the relevant code.

Now run the failed testFailure in the debugger by right clicking on it and selecting
Debug Test. Wing should stop at the exception and you can use the debugger on the
test as you would for any other Python code.

Note that you can also run tests from the editor by clicking on the test you want to run
and selecting Run Tests at Cursor from the Testing menu.

Environment

When unit tests are run in the Testing tool, by default they run in the same
environment that is used for debugging and executing code. This can be changed by
specifying a Launch Configuration to use instead, with Environment under the
Testing tab of Project Properties or File Properties on the unit test file.

1.15. Tutorial: Version Control Systems
Wing provides integrations with the Mercurial, Git, Subversion, Perforce, Bazaar,
and CVS revision control systems. These auto-enable based on the contents of your
project.

If you have a code base that is in revision control you might want to try this out now,
by creating a project for your code base. To make this easier, you can launch a
second instance of Wing by running it from the command line with the --new option.

Once you have added files to the project and saved it, Wing should auto-detect the
revision control system and add a menu to the menu bar. You can now select
Project Status from that menu or use the Tools menu to bring up the appropriate
revision control tool. Right click on the tool or use the menu bar menu to initiate
operations.

Wing IDE Tutorial

41

If you have a project with files in multiple revision control systems or want to keep a
particular system active at all times, you can do this from the Version Control
preferences group.

See the Version Control documentation for details.

Difference and Merge Tool

When a revision control system is active, you can right click on items in the
appropriate revision control tool or on the editor or Project tool to initiate graphical
comparison of changes relative to the repository.

This tool can also be used to compare two files, two directories, and an unsaved file
with the disk:

Try it now by making several changes to example1.py without saving them to disk.
Then click on the Difference/Merge icon in the toolbar to Compare Buffer With Disk:

Wing will split the editor area to show two editors side by side and will show additional
icons in the toolbar to control the difference and merge session:

Use the previous/next buttons in the Difference/Merge toolbar group to move forward
and backward between the differences, and then the A->B tool to undo each unsaved
change.

When comparing directories, Wing will show the Diff/Merge tool while the session is
active, and will highlight the current file being compared as you move through the
session. You can also click on files in this tool to move to a specific comparison.

Difference/Merge is particularly useful for reviewing changes before committing to a
revision control repository, so you can avoid committing unintended changes and can
undo any spurious or whitespace-only changes.

1.16. Tutorial: Searching
Wing IDE provides several different interfaces for searching your code. Which you use
depends on your task.

Wing IDE Tutorial

42

http://wingware.com/doc/versioncontrol/index

Toolbar Search

A quick way to search through the current editor is to enter your search string in the
area provided in the toolbar:

If you enter only lower case the search will be case-insensitive. Entering one or more
upper-case letter causes the search to become case-sensitive.

Try this now in example1.py: Type GetItem in the toolbar search area and Wing will
immediately, starting with the first letter typed, search for matching text in the editor.
Press the Enter key to move on to the next match, wrapping around to the top of the
file if necessary.

Toolbar-based searches always go forward (downward) in the file from the current
cursor position.

Keyboard-driven Search

If you prefer a more powerful search interface using the keyboard only, try the key
bindings for the items in the Mini-search sub-menu of the Edit menu (the bindings
vary by keyboard personality).

From here, you can initiate searching forward and backward in the current editor,
optionally using the current selection in the editor as the search string or using regular
expression matching. You can also initiate replace operations.

Try this in the example1.py file: If using the default editor mode, press the Ctrl-U. For
others, refer to the Mini-search group in the Edit menu.

This will display an entry area at the bottom of the IDE window and will place focus
there:

Continue by typing G, then e, then t. Notice how Wing searches incrementally with
each keypress. This lets you type only as much as you need to find the source code
you are looking for.

While the mini-search area is still active, try pressing the same key combination you
used to display it again and Wing will search for the next matching occurrence. Note
that if no match is found Failed Search will be displayed. However, pressing the mini
search key combination again will wrap around and start searching again at the top of
the file, if there are any matches.

Wing IDE Tutorial

43

As in toolbar search, typing lower case letters results in case-insensitive search, and
using one or more upper case letters results in case-sensitive search.

Search direction can be changed during searching by pressing the key bindings
assigned to forward and backward mini-search. You can exit from the search by
pressing the Esc key or Ctrl-G.

The regular expression based search options found in the Mini-search menu group
work similarly but expect regular expressions for the search criteria (see below).

Keyboard-driven mini-replace works similarly, except that you will be presented with
two entry areas, one for your search string and one for the replace string. Use
Query/Replace to be prompted for Y and N for each replace location, and
Replace String to replace all matches globally in the file.

Wing adjusts some details of how mini-search behaves according to keyboard
personality. For example, in emacs mode Ctrl-G will cancel the search and in vi mode
the search is always case sensitive, as in VI/VIM.

Search Tool

The Search tool provides a familiar GUI-based search and replace tool for operating
on the current editor. Key bindings for operations on this tool are given in the
Search and Replace group in the Edit menu.

Searches may span the whole file or be constrained to the current selection, can be
case sensitive or insensitive, and may optionally be constrained to matching only
whole words.

By default, searching is incremental while you type your search string. To disable this,
uncheck Incremental in the Options menu.

Replacing

When the Show Replace item in Options is activated, Wing will show an area for
entering a replace string and add Replace and Replace All buttons to the Search
tool:

Wing IDE Tutorial

44

Try replacing example1.py with search string PrintAs and replace string OutputAs.

Select the first result match and then Replace repeatedly. One search match will be
replaced at a time. Search will occur again after each replace automatically unless
you turn off the Find After Replace option. Changes can be undone in the editor, one
at a time. Do this now to avoid saving this replace operation.

Next, try Replace All instead. Wing will simply replace all occurrences in the file at the
same time. When this is done, a single undo in the editor will cancel the entire replace
operation.

Wildcard Searching

By default, Wing searches for straight text matches on the strings you type. Wildcard
and regular expression searching are also available in the Options menu.

The easier one of these to learn is wildcard searching, which allows you to specify a
search string that contains * to match anything, ? to match a single character, or
ranges of characters specified within [and] to match any of the specified characters.
This is the same syntax supported by the Python glob module and is described in
more detail in the Wildcard Search Syntax manual page.

Try a wildcard search now by selecting Wild Card from the Options menu and making
sure example1.py is your current editor. Set the search string to PrintAs*(. This
should display match all occurrences of the string PrintAs, followed by zero or more
characters, followed by (:

Also try searching on PrintAs*[A-Z](with the Case Sensitive search option turned
on. This matches all strings starting with PrintAs followed by zero or more characters,
followed by any capital letter from A to Z, followed by (.

Finally, try PrintAsT???, which will match any string starting with PrintAsT followed
by any three characters.

Wing IDE Tutorial

45

http://wingware.com/doc/edit/search-wildcard

Regular Expression Search

Regular expressions can also be used for searching. These are most useful for
complicated search tasks, such as finding all calls to a particular function that occur as
part of an assignment statement.

For example, open\(newscache()?,.*\) matches only calls to the function open
where the first argument is named newscache and there are at least two parameters.
If you try this with example1.py, you should get exactly one search match:

The details of regular expression syntax and usage can be very complicated, so this
tutorial does not cover them. For that, see the Regular Expression Syntax
documentation in the Python manual.

Wing IDE Tutorial

46

http://wingware.com/psupport/python-manual/2.3/lib/re-syntax.html

Search in Files Tool

The Search in Files tool is the most powerful search option available in Wing IDE. It
supports multi-file batch search of the disk, project, open editors, or other sets of files.
It can also search using wildcards and can do regular expression based
search/replace.

Before worrying about the details, try a simple batch search on the example1.py file.
Select Current File from the Look in selector on the Search in Files tool. Then enter
PrintAs into the search area.

Wing will start searching immediately, restarting the search whenever you alter the
search string or make other changes that affect the result set. When you are done,
you should see results like those shown in the screen shot above. Click on the first
result line to select it. This will also display example1.py with the corresponding
search match highlighted.

Wing IDE Tutorial

47

You can use the forward/backward arrows in the Search in Files tool to traverse your
results.

File Filters

Next, change the Look in selector to All Files in Project and change your search
string to HTML. This works the same way as searching a single file, but lists the
results for all files in your project. You can also search all currently open files in this
way.

In many cases, searching is more useful if constrained to a subset of files in your
projects such as only Python files. This can be done with by selecting Python Files in
the Filter selector. You can also define your own file filters using the
Create/Edit Filters... item in the Filter selector. This will display the
Files > File Types > File Filters preference:

Each file filter has a name and a list of include and exclude specifications. Each of
these specifications can be applied to the file name, directory name, or the file's MIME
type. A simple example would be to specify *.pas wildcard for matching Pascal files by
name, or using the text/html mime type for all HTML files.

Searching Disk

Wing can also search directly on disk. Try this by typing a directory path in the
Look in area. Assuming you haven't changed the search string, this should search for
HTML in all text files in that directory.

Disk search can be recursive, in which case Wing searches all sub-directories as well.
This is done by selecting a directory in the Look in scope selector and checking
Recursive Directory Search in the Options menu.

You can alter the format of the result list with the Show Line Numbers item and
Result File Name group in the Options menu, which contains several other search
options as well.

Note that searching Project Files is usually faster than searching a directory structure
because the set of files is precomputed and thus the search only needs to look in the
files and not spend time discovering them.

Wing IDE Tutorial

48

Multi-File Replace

When working with multiple files in the result set, Wing opens each changed file into
an editor, whether or not it is already open. This allows you to undo changes by not
saving files or by issuing Undo within each editor.

If you check Replace Operates on Disk in the Options menu within the
Search in Files tool, Wing will change files directly on disk instead of opening editors
into the IDE. This can be much faster but is not recommended unless you have a
revision control system that can get you out of hot water if mistakes are made.

Note that even when operating directly on disk, Wing will replace changes in
already-open editors only within the IDE. This avoids creating two versions of a file if
there are already edits in the IDE's copy. We recommend selecting Save All from the
file menu immediately after each replace operation. This avoids losing parts of a
replace, resulting in inconsistent application of a replace operation to the files in your
source base.

1.17. Tutorial: Other IDE Features
By now you have seen many of the IDE's features. Before we call it a day, let's look at
a few other major features that are worth knowing about.

PyLint Integration

Wing's PyLint tool, available in the Tools menu, provides a simple integration with the
command line code inspection tool pylint. To use this, you need to download and
install pylint separately. Then right-click on the PyLint tool in Wing to configure the
integration and update the tool's contents for the current file or package. Clicking on
errors, warnings, and informational messages takes you to the source code that pylint
is flagging.

Wing IDE Tutorial

49

Note that this screenshot was taken with User Interface > Display Style preference
set to Match Palette using the Linen color palette. Each of the screenshots that
follows uses a different display style.

OS Commands

The OS Commands tool can be used to set up, execute, and interact with external
commands, for building, deployment, and other tasks. The Build Command field in
the Debug/Execute tab of Project Properties can be used to configure and select
one command to execute automatically before any debug session begins.

For details see OS Commands Tool.

Source Browser

Wing IDE Professional includes a Source Browser that can be used to inspect and
navigate the module and class structure of your source code.

Wing IDE Tutorial

50

http://wingware.com/doc/oscommands/index

By default, the browser will display classes, methods, attributes, functions, and
variables defined in the currently displayed source editor. The popup menu at the top
left of the source browser can be used to alter the display to include all classes or all
modules in the project. The Options menu in the top right allows filtering by origin,
accessibility, and type of source symbols. The Options menu also allows sorting the
view alphabetically, by type, or in the order that symbols occur in the source file.

Double clicking on items in the Source Browser opens them into an editor. When
Follow Selection is enabled in the Options menu, Wing also opens files that are
single-clicked or visited by keyboard navigation in the Source Browser. In this case,
files are opened in non-sticky mode.

Wing IDE Tutorial

51

Notice that the Source Assistant tool is integrated with the Source Browser, and will
update its content as you move around the Source Browser tree as it does for the
editor, shells, and Project tool.

File Sets

Wing allows you to create named sets of files which you can open as a group or
search with the Search in Files tool. File sets can be created and opened from the
File Sets item in the File menu, by selecting items and right-clicking in the Project
tool, by right-clicking in the Open Files tool, and from the Filter and Options menus
in the Search in Files tool.

Note that the Open Files tool is also useful for closing particular files or closing all
files except a selected set.

File Operations

Files can be created, deleted, moved, and renamed from the Project tool by
right-clicking, dragging, and clicking on names in the tree. Deleted files are moved to
the system's trash or recycling bin. When files are in a revision control system, Wing
will also issue the necessary revision control commands to create, delete, move, or
rename the file.

Perspectives

Perspectives are a way to store and later revisit particular arrangements of the user
interface. For example, you may set up one set of visible tools to use when testing,
another for working on documentation, and still another for debugging.

Perspectives are accessed from the Tools menu.

Wing IDE Tutorial

52

Optionally, Wing can automatically switch perspectives whenever debugging starts or
stops, so that the user interface differs according to how the tools were left when last
editing or debugging. This is done by selecting Enable Auto-Perspectives in the
Tools menu.

For more information see Perspectives.

Extending the IDE

Wing IDE can be extended by writing Python scripts that call into the IDE's scripting
API. This is useful for adding everything from simple editor commands and debugger
add-ons to new tools (although the latter is for advanced users only; the PyLint tool
mentioned above is an example of a tool implemented by a script).

There is a collection of user-contributed scripts for Wing IDE on the Wingware Wiki.

See also Scripting and Extending Wing IDE.

1.18. Tutorial: Further Reading
Congratulations! You've finished the tutorial. As you work with Wing IDE on your own
software development projects, the following resources may be useful:

• Wing IDE Support Website which includes our mailing lists and other information
for Wing IDE users.

• Wing IDE Reference Manual which documents the features in detail.
• How-To Guides for information on using Wing with frameworks like Django,

Plone, Google App Engine, matplotlib, Autodesk Maya, NUKE, and others.

Wing IDE Tutorial

53

http://wingware.com/doc/custom/perspectives
http://wiki.wingware.com
http://wingware.com/doc/scripting/index
http://wingware.com/support
http://wingware.com/doc/manual
http://wingware.com/doc/howtos/index

	Introduction for New Users
	Wing IDE Tutorial
	1.1. Tutorial: Getting Started
	1.2. Tutorial: Getting Around Wing IDE
	Context Menus
	Configuring the Keyboard
	Auto-Editing
	Auto-Completion
	Other Configuration Options

	1.3. Tutorial: Check your Python Integration
	1.4. Tutorial: Set Up a Project
	Opening Files
	Transient, Sticky, and Locked Files
	Shared Project Files

	1.5. Tutorial: Setting Python Path
	Python Path Hints

	1.6. Tutorial: Introduction to the Editor
	1.7. Tutorial: Navigating Code
	1.8. Tutorial: Debugging
	1.8.1. Tutorial: Debug I/O
	1.8.2. Tutorial: Debug Process Exception Reporting
	Advanced Options

	1.8.3. Tutorial: Interactive Debugging
	1.8.4. Tutorial: Execution Environment
	1.8.5. Tutorial: Remote Debugging
	1.8.6. Tutorial: Other Debugger Features

	1.9. Tutorial: Auto-Editing
	1.10. Tutorial: Turbo Completion Mode (Experimental)
	1.11. Tutorial: Refactoring
	1.12. Tutorial: Indentation Features
	1.13. Tutorial: Other Editor Features
	1.14. Tutorial: Unit Testing
	1.15. Tutorial: Version Control Systems
	1.16. Tutorial: Searching
	Toolbar Search
	Keyboard-driven Search
	Search Tool
	Replacing
	Wildcard Searching
	Regular Expression Search
	Search in Files Tool
	File Filters
	Searching Disk
	Multi-File Replace

	1.17. Tutorial: Other IDE Features
	1.18. Tutorial: Further Reading

